Cho P= 12017+22017+32017+...+20172017, Q=1+2+3+...+2017
Chứng minh rằng P chia hết cho Q
Bài 1
Tìm các số nguyên x sao cho 2n+1075 chia hết cho x+1
Bài2
a) Tính nhanh B=(-2)+4+(-6)+8+...+(-50)+52
b)Tìm các số nguyên n biết (n+1) chia hết cho (n-1)
Bài 3
Tính nhanh tích sau:
(12017-1032017).(22017-1022017).(32017-10120170).....(1032017-12017)
Bạn nào làm nhanh có lời giải thích mình chọn Đúng cho
Giải giúp mình nha
tìm tích
(12017 - 1032017).(22017 - 1022017).(32017 - 1012017)...(1072017 - 12017)
Cho hàm số f ( x ) = 4 x 4 x + 2 Tính tổng:
S = f ( 1 2017 ) + f ( 2 2017 ) + . . . + f ( 2016 2017 )
A.S = 1007
B. S = 1009
C. S = 1008
D. S = 1006
Đáp án C
Chứng minh nhận xét: Nếu a + b = 1 thì
1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.
2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.
3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.
4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Bài 1 :
Cho A = 13 + \(13^2+13^3+13^4+13^5+13^6.\) Chứng minh rằng A \(\)chia hết cho 2 .
Bài 2 :
Cho C = \(2+2^2+2^3+.....+2^{2011}+2^{2012}\). Chứng minh rằng C chia hết cho 3 .
Bài 3 :
Chứng minh rằng : A = \(2^1+2^2+2^3+.....+2^{59}+2^{60}\)chia hết cho 7
Bài 4 :
Cho A = \(7+7^3+7^5+....+7^{1999}\) . Chứng minh rằng A chia hết cho 35
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
1/chứng minh rằng nếu \(a^2+b^2\)chia hết cho 3 thì cả a và b đều chia hết cho 3
2/ chứng minh rằng \(1^n+2^n+3^n+4^n\)chia hết cho 5 khi và chỉ khi n không chia hết cho 4 ,n thuộc N*
3/ tìm tất cả số tự nhiên n để
a/ \(3^n+63\)chia hết cho 72
b/ \(2^{2n}+2^n+1\)chia hết cho 7
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
Bài Toàn 16 : Tính tổng
a) S = 1 + 2 + 22 + 23 + … + 22017
b) S = 3 + 32 + 33 + ….+ 32017
c) S = 4 + 42 + 43 + … + 42017
d) S = 5 + 52 + 53 + … + 52017
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
3. a) Xét hiệu \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮2.3=6\)( tích của 3 số nguyên liên tiếp)
Tương tự: \(b^3-b⋮6\)và \(c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\Rightarrow a^3+b^3+c^3⋮6\Leftrightarrow a+b+c⋮6\)
b) Ta có: \(30=2.3.5\)và 2,3,5 đôi một nguyên tố cùng nhau.
Theo định lý Fermat: \(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\Rightarrow a^5\equiv a^2\equiv a\left(mod2\right)\)
\(a^3\equiv a\left(mod3\right)\Rightarrow a^5\equiv a^3\equiv a\left(mod3\right)\)
\(a^5\equiv a\left(mod5\right)\)
Theo tính chất của phép đồng dư, ta có:
\(a^5+b^5+c^5\equiv a+b+c\left(mod2\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod3\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod5\right)\)
Do đó: \(a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\). Tức là nếu a+b+c chia hết cho 30 thì ....(đpcm)
\(a^3+b^3+c^3\) chia hết cho7
chứng minh rằng: ít nhất một số a;b;c chia hết cho 7
Câu 2: Cho\(\frac{1}{n}+\frac{1}{n+1}+...+\frac{1}{n+9}=\frac{p}{q}\)
Tìm n để q chia hết cho 2006
Câu 3: cho x là số tự nhiên lẻ
chứng minh rằng: \(\left(1^x+2^x+3^x+...+n^x\right)\)chia hết cho(1+2+3+...+n)
Câu 2 nè:
Ta có:2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006
* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}\)
\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{58}=\frac{A}{B}\)(trong đó B ko chia hết 59)
\(\Rightarrow S=\frac{A}{B}+\frac{1}{59}=\frac{\left(59A+B\right)}{59B}=\frac{p}{q}\)
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.
- Đặt \(\frac{1}{50}+\frac{1}{52}+...+\frac{1}{58}=\frac{C}{D}\) ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
=>đpcm
nếu đề có thêm điều kiện n nhỏ nhất thì làm như vậy còn ko thì chỉ chép đến chỗ dấu "'*" thui
cho P=1^2017 +2 ^2017 + ... + 2016^2017 ; Q = 1+2+3+...+2016. Chứng minh rằng P chia hết cho Q
ngu người bài này mà không biết giải
Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi