Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sen Hồng
Xem chi tiết
Nguyễn Xuân Đức
23 tháng 4 2020 lúc 15:51

tui hoc l 6

Khách vãng lai đã xóa
Trần Thị Thanh Nga
23 tháng 4 2020 lúc 15:51

Ớ hok dốt lắm tớ k bít làm đâu

Khách vãng lai đã xóa
Hoàng Thanh Trang
23 tháng 4 2020 lúc 15:56

nhìn nhiều sồ quá mk ko hiểu

Khách vãng lai đã xóa
Nguyen Anh
Xem chi tiết
Sún BMT
Xem chi tiết
Dương Kim Ly
Xem chi tiết
Phan Quốc Cường
Xem chi tiết
zxcvbnm
Xem chi tiết
Nguyễn Ngọc Huy Toàn
20 tháng 3 2022 lúc 19:16

Xét tam giác AEH và tam giác AHB, có:

\(\widehat{AHB}=\widehat{AEH}=90^0\)

\(\widehat{A}:chung\)

Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )

Trường Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2023 lúc 0:32

a: Xét ΔHBA vuông tại H có HE là đường cao

nên AE*AB=AH^2

b: Xét ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

c: AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

d: góc MAC+góc AFE

=góc MCA+góc AHE

=góc BCA+góc ABC=90 độ

=>AM vuông góc EF

Kon Kon
Xem chi tiết
Nguyễn Bảo Lâm 7/5
Xem chi tiết
Akai Haruma
30 tháng 3 2023 lúc 19:02

Lời giải:
a. Xét tam giác $AHB$ và $CAB$ có:
$\widehat{AHB}=\widehat{CAB}=90^0$

$\widehat{B}$ chung

$\Rightarrow \triangle AHB\sim \triangle CAB$ (g.g)

b. Từ tam giác đồng dạng phần a suy ra:

$\frac{HB}{AB}=\frac{AB}{CB}$

$\Rightarrow HB=\frac{AB^2}{BC}=\frac{AB^2}{\sqrt{AB^2+AC^2}}=\frac{15^2}{\sqrt{15^2+20^2}}=9$ (cm)

c. Xét tam giác $AHD$ và $ABH$ có:

$\widehat{A}$ chung

$\widehat{ADH}=\widehat{AHB}=90^0$

$\Righarrow \triangle AHD\sim \triangle ABH$ (g.g)

$\Rightarrow \frac{AH}{AB}=\frac{AD}{AH}$

$\Rightarrow AB.AD=AH^2(*)$

Tương tự ta cũng chỉ ra $\triangle AHE\sim \triangle ACH$ (g.g)

$\Rightarrow AE.AC=AH^2(**)$
Từ $(*); (**)\Rightarrow AB.AD=AE.AC$ (đpcm)

 

Akai Haruma
30 tháng 3 2023 lúc 19:02

Hình vẽ: