Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shenlong
Xem chi tiết
tth_new
15 tháng 4 2019 lúc 9:15

Theo đề bài,đặt \(x+y=k\inℤ\) (1)

\(\frac{1}{x}+\frac{1}{y}=\left(x+y\right).\frac{1}{xy}=k.\frac{1}{xy}\)

Do k nguyên (theo (1)) nên để \(\frac{1}{x}+\frac{1}{y}\) nguyên thì \(\frac{1}{xy}\) nguyên

Nên \(xy\inƯ\left(1\right)=\left\{1;-1\right\}\)

Suy ra \(\left(x;y\right)=\left(1;1\right),\left(-1;-1\right),\left(1;-1\right),\left(-1;1\right)\)

Đúng không ta?

tth_new
15 tháng 4 2019 lúc 14:08

ơ,t sai rồi=( nếu làm như t sẽ bị thiếu nghiệm,chẵn hạn x =y = 2 hoặc x = 2 ; y = -2=.Ai có cách khác giúp với ạ!

Trần Văn Quân
Xem chi tiết
Never_NNL
26 tháng 6 2018 lúc 15:06

Lũy thừa các số thực mang dấu duong khi số mũ chẵn .
Mà 2 là số chẵn
=> x^2 dương ; y^2 dương .
Số dương nhân với số dương ta luôn được kết quả là số dương
=> x^2y^2 dương
Vì số dương thuộc tập hợp các số nguyên nên x^2y^2 nguyên

saadaa
Xem chi tiết
Thiên An
19 tháng 8 2016 lúc 19:50

Theo đề ta có \(\left(x+\frac{1}{y}\right)\in Z\) và \(\left(y+\frac{1}{x}\right)\in Z\)\(\Rightarrow\)\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)

hay \(\left(xy+\frac{1}{xy}+2\right)\in Z\)\(\Rightarrow\)\(\left(xy+\frac{1}{xy}\right)\in Z\)

Suy ra \(\left(xy+\frac{1}{xy}\right)^2\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}+2\right)\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}\right)\in Z\)

Vậy \(x^2y^2+\frac{1}{x^2y^2}\) là số nguyên (đpcm).

saadaa
19 tháng 8 2016 lúc 20:57

\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+2+\frac{1}{xy}\)

vì 2 nguyên nên \(xy+\frac{1}{xy}\)nguyên

\(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+\frac{1}{x^2y^2}+2\)

nen \(x^2y^2+\frac{1}{x^2y^2}\)nguyên

Bảy việt Nguyễn
Xem chi tiết
Nguyen Khanh Linh
Xem chi tiết
Trần Nguyễn Khánh Linh
Xem chi tiết
Trần Nguyễn Khánh Linh
6 tháng 12 2017 lúc 21:12

Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)

=>\(xy+\frac{1}{xy}\in Z\)

=>\(\left(xy+\frac{1}{xy}\right)^3\)

=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)

=>ĐPCM

Nguyễn Long Nhật
Xem chi tiết
Nguyễn Thị Lan Hương
14 tháng 10 2020 lúc 20:55

a) Ta có :

a/b+c< 2a/(a+b+c)

b/(c+a)<2b/(a+b+c)

c/(a+b)<2c/(a+b+c)

=> a/(b+c)+b/(c+a)+c/(a+b)<(2a+2b+2c)/(a+b+c)=2

Vậy...

Khách vãng lai đã xóa
Nguyễn Thị Thùy
Xem chi tiết
Quang Huy
Xem chi tiết