Cho hình vuông ABCD. Trên hai cạnh AB, BC lấy hai điểm P và Q sao cho BP = BQ. Gọi H là hình chiếu của B trên đường thẳng CP
a) Chứng minh ∆BHP ~ ∆CHB
b) Chứng minh BH/BQ = CH/CD
c) Chứng minh ∆CHD ~ ∆BHQ. Từ đó suy ra góc DHQ = 90
Cho hình vuông ABCD. Trên cạnh AB, BC lấy lần lượt 2 điểm P và Q sao cho BQ=BP. H là hình chiếu của B trên cạnh CP. Chứng minh góc DQH = 90 độ
Cho hình vuông ABCD. Lấy P trên cạnh AB, Q trên cạnh BC sao cho BP=BQ. Gọi H là hình chiếu của B lên CP
a, CM: tam giác HBC ~ tam giác BPC
b, CM: CH/CD=BH/BQ và so sánh góc DCH= góc QBH
c, CM: tam giác CHD ~ tam giác BHQ và tính số đo góc DHQ
Cho hình vuông ABCD . Trên cạnh BA và BC lấy hai điểm P và Q sao cho BP = BQ . Kẻ BH vuông góc với PC . CM :
a) Tam giác BHP đồng dạng với tam giác CHB
b) BH/BQ=CH/CD
c) Tam giác DHC đồng dạng với tam giác QHB
d) Góc DHQ = 90O
gửi mk đáp án vs ạ
cho hcn ABCD ;AB=2AD. trên cạnh AD lấy M ,trên cạnh BC lấy P sao cho AM=CP .kẻ BH vuông góc vs AC tại H .gọi Q là trung điểm của CH ,đường thẳng kẻ qua P song song vs MQ cắt AC tại N
a) chứng minh tứ giác MNPQ là hình bình hành
b) khi M là trung điểm AD .chứng minh BQ vuông góc vs NP
c) đường thẳng AP cắt DC tại điểm F . chứng minh rằng \(\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)
Cho hình vuông ABCD, trên các cạnh AB, BC đặt BP và BQ. Vẽ BH vuông góc CP. Chứng minh BH vuông góc HQ
Bài 1: Cho hình vuông ABCD. Lấy E trên cạnh AB, lấy F trên cạnh BC sao cho BE=BF. Gọi H là hình chiếu của B trên CE.
1) Chứng minh ∆HBC đồng dạng với ∆BDC
2) Chứng minh \(\dfrac{CH}{CD}\)=\(\dfrac{BH}{BF}\)và so sánh góc DCH và góc FBH.
1:
Sửa đề: ΔBEC
Xét ΔHBC vuông tại H và ΔBEC vuông tại B có
góc HCB chung
=>ΔHBC đồng dạng với ΔBEC
2: ΔHBC đồng dạng với ΔBEC
=>CH/CB=BH/BE
=>CH/CD=BH/BF
Cho hình chữ nhật ABCD, AB = 2AD. Trên cạnh AB lấy điểm M, trên cạnh BC lấy điểm P sao cho AM = CP. KẻBH vuông góc với AC tại H. Gọi Q l{ trung điểm của CH, đường thẳng kẻqua P song song với MQ cắt AC tại N.
a . Khi M là trung điểm của AD. Chứng minh BQ vuông góc với NP
b AP cắt DC tại F. Chứng minh rằng \(\frac{1}{AB^2}\) = \(\frac{1}{AP^2}\)+\(\frac{1}{4AF^2}\)
a) Gọi E là trung điểm BK
Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)
Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành
Chứng minh AE//NP//MQ (3)
Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác
=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ
=> BQ _|_ NP
b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G
Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\))
=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)
Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)
=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)
Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)
Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)
\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)
Cảm ơn nhiều ạ!
cho tam giác abc. gọi e, f lần lượt là trung điểm của ab, ac. trên tia đối của tia fb lấy p sao cho pf = bf. trên tia đối của tia ec lấy điểm q sao cho qe = ce. a) chứng minh a là trung điểm của pq. b) chứng minh bq // ac và cp // ab. c) gọi r là giao điểm của hai đường thẳng pc và qb. chứng minh chu vi tam giác pqr bằng hai lần chu vi tam giác abc. d) chứng minh ar, bp,cq đồng quy tại một điểm.
giup mik gap voi :((((((((((((
a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ.
a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ.
=> đề
c)
xét tam giác BEQ và tam giác AEC có
EQ=EC
BEQ=AEC đối đỉnh
EB=EA
=> tam giác BEQ = tam giác AEC(c.g.c)
=> BQE=AEC (góc tương ứng)
mà chúng ở vị trí so le trong nên BQ//AC.
xét tam giác PFC và BFA có:
FA=FC
AFB=CFP
BF=PF
=> tam giác PFC = BFA (c.g.c)
=> FAB = FCB(góc tương ứng)
mà chúng ở vị trí so le trong nên
Còn lại tra link này tự tìm :)) : https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-e-f-lan-luot-la-trung-diem-cua-ab-ac-tren-tia-doi-cua-fb-lay-p-sao-cho-fp-fb-tren
Cho tam giác ABC. Gọi E, F lần lượt là trung điểm của AB, AC.
Trên tia đối của tia FB lấy P sao cho PF = BF. Trên tia đối của tia EC lấy điểm Q sao cho QE = CE.
a) Chứng minh A là trung điểm của PQ.
b) Chứng minh BQ // AC và CP // AB.
c) Gọi R là giao điểm của hai đường thẳng PC và QB. Chứng minh chu vi tam giác PQR bằng hai lần chu vi tam giác ABC.
d) Chứng minh AR, BP,CQ đồng quy tại một điểm.