CHO HÌNH THANG CÂN ABCD CÓ ĐÁY NHỎ AB BẰNG CẠNH BÊN AD.CHỨNG MINH:CA LÀ PHÂN GIÁC CỦA GÓC C
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD.chứng minh rằng CA là tia phân giác của góc C
vì ABCD là hình thang cân nên ta có AD=BC(hai cạnh bên)
mà theo bài ra AB=AD => AB=AD=BC
=> tam giác ABC cân tại B => góc BAC= góc BCA(hai góc đáy)
mặt khác ta có góc BAC = góc ACD ( so le trong)
=> góc BCA = góc ADC => CA là tia phân giác góc C
Bài 1: CHo hình thang ABCD có cạnh đáy nhỏ AB bằng cạnh bên AD.Chứng minh CA là phân giác góc C.
Bài 1: CHo hình thang ABCD có cạnh đáy nhỏ AB bằng cạnh bên AD.Chứng minh CA là phân giác góc C
Cho hình thang ABCD có góc Â=100°,C=70° và cạnh đáy AB bằng cạnh bên AD.Chứng minh tam giác DBC cân Có ai giúp tui với ạ
ABCD là hình thang có AB//CD
=>góc A+góc ADC=180 độ và góc ABC+góc C=180 độ
=>góc ADC=80 độ và góc ABC=180-70=110 độ
ΔABD cân tại A
=>góc ABD=góc ADB=(180-100)/2=40 độ
=>góc BDC=40 độ
góc DBC=180-40-70=70 độ
Vì góc DBC=góc DCB
nên ΔDBC cân tại D
bài 1: Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD.Chứng minh rằng CA là tia phân giác của góc C
bài 2: Tứ giác ABCD có AB=BC=AD , góc A =110 : C=70
a) DB là tia phân giác của góc D
b)ABCD là Hình thang cân
Bài 3Cho tam giác ABC cân tại A . Lấy điểm D trên cạnh AB , điểm e trên cạnh AC sao cho AD=AE
a)Tứ giác BDCE là Hình gì ? Vì sao ?
b) CÁc điểm D,E ở vị trí nào thì BD=DE=EC
Mong các bạn nhanh giùm mk
Mình cần gấp!!!
Theo bài ra ta có tứ giác ANCD là hình thang cân
=> AD = BC
Mà AB = AD
=> AD = BC = AB
=> tam giác ABC có AB = Bc=> ABC là tam giác cân
=> góc BAC = góc BCA (1)
Vì AB//CD => góc BAC = góc ACD (2)
Từ (1) và (2)
=> góc BCA = góc ACD
=> AC là đường phân giác của góc C
=> đpcm
2) a) Kẻ BN vuông AD , BM vuông CD
Xét tam giác vuông BNA và BMD ta có :
AB = BC ; góc BNA = \(180^o-\widehat{BAD}=70^o\)nên góc BAN = BCD = \(70^o\)
\(\Rightarrow\)tam giác BMD = tam giác BND ( cạnh huyền - góc nhọn )
\(\Rightarrow\)\(BN=BM\Rightarrow BD\)là tia phân giác của góc D
b) Nối B với D do AB = AD nên tam giác ABD cân tại A khi đó góc ADB = ( \(180^o-110^o\)) : 2= \(35^o\)
\(\Rightarrow\widehat{ADC}=70^o\)
do góc ADC + góc BAD = \(180^o\Rightarrow\)AB// CD
Và góc BCD = góc ADC= \(70^o\)
Suy ra ABC là hình thang cân
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C.
Ta có:
AB = AD (gt)
AD = BC (tính chất hình thang cân)
⇒ AB = BC do đó ΔABC cân tại B
⇒ ∠ BAC = ∠ BCA (tính chất tam giác cân) (*)
ABCD là hình thang có đáy là AB nên AB // CD
∠ BAC = ∠ DCA (hai góc so le trong) (**)
Từ (*) và (**) suy ra: ∠ BCA = ∠ DCA (cùng bằng ∠ BAC)
Vậy CA là tia phân giác của ∠ BCD.
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. CMR CA là tia phân giác của góc C.
Dễ mà
Ta có: AB = AD
Mà AD = BC ( vì ABCD là hình thang cân)
=> AB = BC
Nối A và C lại vs nhau
Ta có: AB = BC => tamm giác ABC là tam giác cân => góc BAC = góc BCA (1)
Ta lại có: AB // CD ( ABCD là hình tang cân)
=> Góc BAC = góc ACD ( cặp góc so le trong) (2)
Từ (1) và (2)
=> Góc BCA = góc ACD => CA là phân giác của góc C
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. C/m: CA là tia phân giác của góc C
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C ?
Ta có: \(AB = AD\)
Mà \(AD = BC\) (ABCD là hình thang cân)
\(\Rightarrow AB=BC\)
Nối A và C
Ta có: \(AB=BC\Rightarrow\Delta ABC\) là \(\Delta\) cân \(\Rightarrow\widehat{BAC}=\widehat{BCA}\) (1)
Ta lại có: AB // CD (ABCD là hình tang cân)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\) ( cặp góc so le trong) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BCA}=\widehat{ACD}\Rightarrow CA\) là phân giác của \(\widehat{C}\) (ĐPCM)