Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tzanh
Xem chi tiết
Nga Nguyen
13 tháng 4 2022 lúc 18:45

lỗi r bn

laala solami
13 tháng 4 2022 lúc 18:45

lx

Nga Nguyen
13 tháng 4 2022 lúc 19:06

đây nhé bn

\(a 2 + 3 a + 4 ≥ 5 a + 3 ⇔ a 2 − 2 a + 1 ≥ 0 ⇔ ( a − 1 ) 2 ≥ 0\)

HUỲNH PHÚC
Xem chi tiết
Trần Tâm
Xem chi tiết
Bùi Võ Đức Trọng
15 tháng 7 2021 lúc 10:31

undefined

Nghi Nghi
Xem chi tiết
Nguyễn Quỳnh Anh
5 tháng 11 2019 lúc 21:08

vì 3a+b chia hết cho 4 nên 7(3a+b) chia hết cho 4

*21a+7b chia hết cho 4

*(5a+3b)+(16a+4b) chia hết cho 4

mà 16a+4b chia hết cho 4

*5a +3b chia hết cho 4

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Akai Haruma
13 tháng 4 2021 lúc 14:27

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Nguyen hoan
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 16:22

Lời giải:

Áp dụng BĐT Cô-si:

$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$

$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$

$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$

Cộng các BĐT trên theo vế và thu gọn ta được:

$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$

Ta có đpcm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2019 lúc 11:11

Vì a, b, c không âm và có tổng bằng 1 nên  0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g   t ự :   5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7   ( đ p c m )

bou99
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:02

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:07

Bài 1 : 

a^2 + b^2 + 9 = ab + 3a + 3b 

<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b 

<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0 

<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0 

Dấu ''='' xảy ra khi a = b = 3 

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 15:14

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Chi Khánh
Xem chi tiết
Dream
25 tháng 8 2021 lúc 18:29

Tìm 2 số tự nhiên liên tiếp có tích bằng
a) 3306 ; b) 7656 ; c) 1806 ; d) 5402

Khách vãng lai đã xóa