tính:
A=2/1.4+2/4.7+2/7.10+...+2/97.100
a = 2/1.4+2/4.7 +4/7.10 +... + 2/97.100
=2/3(3/1*4+3/4*7+...+3/97*100)
=2/3(1-1/4+1/4-1/7+...+1/97-1/100)
=2/3*99/100
=198/300
=66/100
=33/50
2/1.4+2/4.7+2/7.10+...+2/97.100
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
Tính tổng A= 2/1.4+ 2/4.7+ 2/7.10+......+2/97.100
A= 2/1.4+2/4.7+2/7.10+...+2/97.100
= 2.(1/1.4+1/4.7+1/7.10+...+1/97.100)
= 2.(1/1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
= 2.(1/1-1/100)
= 2.(99/100)
=99/50
\(A=\dfrac{2}{1\cdot4}+\dfrac{2}{4\cdot7}+\dfrac{2}{7\cdot10}+...+\dfrac{2}{97\cdot100}\)
\(A=\dfrac{2}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{97\cdot100}\right)\)
\(A=\dfrac{2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(A=\dfrac{2}{3}\cdot\left(1-\dfrac{1}{100}\right)\)
\(A=\dfrac{2}{3}\cdot\dfrac{99}{100}\)
\(A=\dfrac{33}{50}\)
\(A=\dfrac{2}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{2}{3}\times\dfrac{99}{100}=\dfrac{33}{50}\)
Tính tổng B=2/1.4+2/4.7+2/7.10+.....+2/97.100
Mình mới học lớp 5 , xin lỗi nhé, mình cũng rất muốn giúp bạn nhưng ko đc.
nếu không làm được thì thôi, mong bạn đừng nhắn lời xin lỗi ạ. Không ai như bạn đâu!
tính tổng : A =2/1.4+2/4.7+2/7.10+....+2/97.100
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}\right)+\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{2}{3}.\left(\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\frac{99}{100}\)
\(A=\frac{33}{50}\)
Tính B = 2/1.4 + 2/4.7 + 2/7.10 + ....+ 2/97.100
\(B=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)
\(B=\dfrac{2}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)
\(B=\dfrac{2}{3}\left(\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{100-97}{97.100}\right)\)
\(B=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(B=\dfrac{2}{3}\left(1-\dfrac{1}{100}\right)\)
\(B=\dfrac{2}{3}.\dfrac{99}{100}\)
\(B=\dfrac{33}{50}\)
Tính
S=2/1.4+2/4.7+2/7.10+....+2/97.100
A=2/1.4+2/4.7+2/7.10+...+2/97.100
=2/3(3/1.4+3/4.7+3/7.10+...+3/97.100)
=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
=2/3(1-1/100)=33/50
\(S=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+......+\frac{2}{97.100}\)
\(\Rightarrow S=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\\ \Rightarrow S=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\\ \Rightarrow S=\frac{2}{3}\left(1-\frac{1}{100}\right)\\ \Rightarrow S=\frac{33}{50}\)
A=2/1.4+2/4.7+2/7.10+...+2/97.100
=2/3 (3/1.4+3/4.7+3/7.10+...+3/97.100)
=2/3 (1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
=2/3 (1-1/100)=33/50
ok rồi ạ
Tính A=3^2/1.4+3^2+4.7+3^2+7.10+...+3^2/97.100
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(\Rightarrow A=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(\Rightarrow A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(\Rightarrow A=3\left(1-\frac{1}{100}\right)\)
\(\Rightarrow A=3.\frac{99}{100}\)
\(\Rightarrow A=3.\frac{99}{100}\)
\(\Rightarrow A=\frac{297}{100}\)
Tính tổng:
2/1.4+2/4.7+2/7.10+....+2/97.100
A= 2/1.4+2/4.7+2/7.10+...+2/97.100
= 2.(1/1.4+1/4.7+1/7.10+...+1/97.100)
= 2.(1/1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
= 2.(1/1-1/100)
= 2.(99/100)
=99/50
\(\frac{2}{1.4}+\frac{2}{4.7}+....+\frac{2}{97.100}\)
\(=\frac{1}{3}\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-\frac{2}{7}+...+\frac{2}{97}-\frac{2}{100}\right)\)
\(=\frac{1}{3}\left(2-\frac{2}{100}\right)=\frac{1}{3}\left(\frac{200}{100}-\frac{2}{100}\right)=\frac{1}{3}.\frac{198}{100}=\frac{33}{50}\)
\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\frac{99}{100}\)
\(=\frac{33}{50}\)