Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Xuân Dũng

tính:

A=2/1.4+2/4.7+2/7.10+...+2/97.100

Quốc Anh Hoàng
11 tháng 9 2016 lúc 11:24

Ta có: \(A=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\)

\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)

Nhận xét: \(\frac{a}{x.\left(x+a\right)}=\frac{1}{x}-\frac{1}{x+a}\)

Do đó: \(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(=\frac{2}{3}.\left(\frac{100}{100}-\frac{1}{100}\right)\)

\(=\frac{2}{3}.\frac{99}{100}\)

\(=\frac{33}{50}\)

Vậy,\(A=\frac{33}{50}\)

l҉o҉n҉g҉ d҉z҉
11 tháng 9 2016 lúc 11:17

\(\text{Ta có: }A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+....+\frac{2}{97.100}\)

\(\Rightarrow\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\)

\(\Rightarrow\frac{3}{2}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow\frac{3}{2}A=1-\frac{1}{100}\)

\(\Rightarrow\frac{3}{2}A=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{100}:\frac{3}{2}\)

\(A=\frac{99}{100}.\frac{2}{3}=\frac{33}{50}\)

Jin Chiến Thần Vô Cực
11 tháng 9 2016 lúc 11:18

A = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100

A = 2/3.3/1.4 + 2/3.3/4.7 + 2/3.3/97.100

A = 2/3( 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/97 - 1/100 ( dùng phương pháp khử )

A = 2/3(1 - 1/100 )

A = 2/3.99/100

A = 33/50


Các câu hỏi tương tự
Thuy Tran
Xem chi tiết
Nguyễn Xuân Dũng
Xem chi tiết
ẩn danh
Xem chi tiết
Nguyễn Thị Ghost
Xem chi tiết
Trần Khánh Hiền
Xem chi tiết
Mori Ran
Xem chi tiết
Tuấn Vỹ
Xem chi tiết
Mickey Vân
Xem chi tiết
Nguyễn Vũ ngọc Huy
Xem chi tiết