Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 1 2017 lúc 4:29

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 1 2018 lúc 13:42

Chọn A

Bla bla bla
Xem chi tiết
Akai Haruma
29 tháng 11 2023 lúc 18:28

Lời giải:
$a^4-4a=b^4-4b$

$\Leftrightarrow (a^4-b^4)-(4a-4b)=0$

$\Leftrightarrow (a-b)(a+b)(a^2+b^2)-4(a-b)=0$

$\Leftrightarrow (a-b)[(a+b)(a^2+b^2)-4]=0$

$\Rightarrow (a+b)(a^2+b^2)-4=0$ (do $a-b\neq 0$ với mọi $a,b$ phân biệt)

$\Rightarrow (a+b)(a^2+b^2)=4>0$

Mà $a^2+b^2>0$ với mọi $a,b$ phân biệt nên $a+b>0$

Mặt khác:

Áp dụng BĐT AM-GM:

$4=(a+b)(a^2+b^2)\geq (a+b).\frac{(a+b)^2}{2}$

$\Rightarrow 8> (a+b)^3$

$\Rightarrow 2> a+b$

Vậy $0< a+b< 2$ 

Ta có đpcm.

 

Nguyễn Xuân Nghi
Xem chi tiết
Huy Nguyễn Đức
24 tháng 12 2016 lúc 21:18

a/b+b/a-ab

=a/b+b/a-(a-b)

=a/b+b/a-a+b

=a/b-a+b/a+b

=(a-ab)/b+(b+ab/a)

=(a-a+b)/b-((b+a-b)a

=1+1

=2

Hoàng Phúc
24 tháng 12 2016 lúc 21:48

vì a,b khác  0 => a.b khác 0

ta có: a/b + b/a - ab

=(a^2+b^2-a^2b^2)/ab

=[(a-b)^2+2ab-a^2b^2]/ab

=(a^2b^2+2ab-a^2b^2)/ab=2ab/ab=2 (do a-b=ab)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2018 lúc 11:37

Ta có:

 

Dấu “=” xảy ra khi và chỉ khi

Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.

Chọn B.

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 10 2017 lúc 18:03

Đáp án là C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 1 2017 lúc 2:26

Chọn đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 9 2019 lúc 16:41

Chọn đáp án D