Cho A = 1/2 + 1/2^2 +1/2^3 + ... + 1/2^2016. Chứng tỏ A < 1.
Help me, please!!!!!!!!!!!!!!
Cho A = 1/2 + 1/2^2 +1/2^3 + ... + 1/2^2016. Chứng tỏ A < 1.
Help me, please!!!!!!!!!!!!!!
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(A=1-\frac{1}{2^{2016}}< 1\)
Cho A = 1/2 + 1/2^2 +1/2^3 + ... + 1/2^2016. Chứng tỏ A < 1.
Help me, please!!!!!!!!!!!!!!
Cố gắng giải cho mình nha mí bạn! Thank you very much!
Cho M=1+\(^{2^2+2^3+.....+2^{2019}}\)
a)Chứng tỏ M \(⋮\)7
b) Viết M+1 dưới dạng 1 lũy thừa
Please help me!!!!!
a) M = 1 + 2 + 22 + 23 + ..... + 22019
= ( 1 + 2 + 4 ) + 23( 1 + 2 + 4 ) +.... + 22016 ( 1 + 2 + 4 )
= 7 ( 1 + 23 + 22016 ) chia hết cho 7 (đpcm)
b) M + 1 = 1 + 1 + 2 + 22 + 23 +... + 22019
= 4 + 22 + 2 3 + .....22019
= 2 x 22 + 23 + .... + 22019
= 2 x 23 + .... + 22019
= 2 x 2 2019
= 22020
Cho A= 1/2 + 1/3 + 1/4 + ... + 1/2016
B= 2015/1 + 2014/2 + ... + 2/2014 + 1/2015
Tính : A/B
______________________________________________________________________________________________________________
Please help me!!!
Làm ơn.
Cho A = 1+1/2+1/3+...+1/2^10-1. Chứng tơ A<10
Please help me
Có A=1+ 1/2+1/3+... +1/2^10-1
<=> 2-1+1-1/2+1/2-1/3+...- 1/2^10-1
<=> 2-1/2^10-1
Mà 1/2^10-1 < 1 => 2-1/2^10-1 <2
=> A<10
Cho A = 1 + 2 + 22 + 23 +....+ 211
Không tính tổng A, hãy chứng tỏ A chia hết cho 3.
Help me.
\(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)=3+2^2.3+...+2^{10}.3=3\left(1+2^2+...+2^{10}\right)⋮3\)
\(A=1+2+2^2+2^3+...+2^{10}+2^{11}\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{10}\right)\)
\(=3\left(1+2^2+...+2^{10}\right)\) ⋮3
Cho A=1*2*3*...*2015*2016*(1+1/2+1/3+...+1/2015+1/2016)
Chứng tỏ rằng A là số tự nhiên chia hết cho 2017
cho A = 1/3+1/3^2+1/3^3+...+1/3^2016
chứng tỏ A < 1/2
\(\frac{1}{3}A=\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2017}\)
\(A-\frac{1}{3}A=\frac{1}{3}-\left(\frac{1}{3}\right)^{2017}\)
\(A=\frac{2}{3}\left[\frac{1}{3}-\left(\frac{1}{3}\right)^{2017}\right]\)
\(A=\frac{2}{9}-\frac{2}{3}.\left(\frac{1}{3}\right)^{2017}\)
\(\frac{2}{9}< \frac{1}{2};\frac{2}{3}.\left(\frac{1}{3}\right)^{2017}>0\Rightarrow A< \frac{1}{2}\)
Cho A = 1/2^2+1/3^2+1/4^2+...+1/2016^2+1/2017^2. Chứng tỏ rằng A không phải là số tự nhiên