Cho tam giác ABC vuông tại A, đường phân giác trong BE, EC = 3, BC = 6. Tính độ dài các đoạn thẳng AB, AC.
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
Cho tam giác ABC vuông tại A, biết AB = 6 cm, AC = 8 cm. Tia phân giác của góc A cắt BC tại E. a) Tính độ dài các đoạn thẳng BC, BE, EC
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có AE là phân giác
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)
=>\(\dfrac{BE}{6}=\dfrac{CE}{8}\)
=>\(\dfrac{BE}{3}=\dfrac{CE}{4}\)
mà BE+CE=BC=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{10}{7}\)
=>\(BE=\dfrac{10}{7}\cdot3=\dfrac{30}{7}\left(cm\right);CE=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right)\)
Cho tam giác ABC vuông tại A, biết AB = 6 cm, AC = 8 cm. Tia phân giác của góc A cắt BC tại E. a) Tính độ dài các đoạn thẳng BC, BE, EC. b) Kẻ đường trung tuyến AM, M BC . Từ M kẻ đường thẳng vuông góc với AC cắt AC tại N. Tính tỉ số AN AC . c) Kẻ AH BC (H BC) . Từ A kẻ đường thẳng vuông góc với AM cắt BC tại D. Chứng minh rằng AB là tia phân giác của góc DAH
Cho tam giác ABC vuông tại A, biết AB = 6 cm, AC = 8 cm. Tia phân giác của góc A cắt BC tại E. a) Tính độ dài các đoạn thẳng BC, BE, EC. b) Kẻ đường trung tuyến AM, M BC . Từ M kẻ đường thẳng vuông góc với AC cắt AC tại N. Tính tỉ số AN AC .
cho tam giác ABC vuông tại A, AB=6cm, BC=10cm. BE là phân giác của góc ABC ( E thuộc AC ). tính độ dài đoạn thẳng AC,AE,EC
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=8cm\)
Vì BE là pg \(\dfrac{AB}{BC}=\dfrac{AE}{EC}\Rightarrow\dfrac{EC}{BC}=\dfrac{AE}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{EC}{BC}=\dfrac{AE}{AB}=\dfrac{AC}{AB+BC}=\dfrac{8}{16}=\dfrac{1}{2}\Rightarrow EC=5cm;AE=3cm\)
cho tam giác ABC vuông tại A đường phân giác trong BE biết EC=3cm BC=6cm . Tínhđộ dài đoạn thẳng AB,AC
Bài 1: Cho ABC vuông tại A có AB = 36cm; AC = 48cm. Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt đường thẳng AC, AB theo thứ tự tại D và E
a) chứng minh rằng tam giác ABC đồng dạng tam giác MDC
b) Tính các cạnh của tam giác MDC
c) tính độ dài EC d) tính độ dài đoạn thẳng EC
e) tính tỉ số diện tính cảu hai tam giác MDC và ABC
d) tính độ dài đoạn tahrnưg EC
chij vào vndoc á xong rùi kéo xuống nó vẹ cho
Bài 1: Cho ABC vuông tại A có AB = 36cm; AC = 48cm. Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt đường thẳng AC, AB theo thứ tự tại D và E
a) chứng minh rằng tam giác ABC đồng dạng tam giác MDC
b) Tính các cạnh của tam giác MDC
c) tính độ dài EC d) tính độ dài đoạn thẳng EC
e) tính tỉ số diện tính cảu hai tam giác MDC và ABC
d) tính độ dài đoạn tahrnưg EC
a, Xét △ABC vuông tại A và △MDC vuông tại M
Có: ∠ACB là góc chung
=> △ABC ᔕ △MDC (g.g)
b, Xét △ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pytago)
=> 362 + 482 = BC2 => BC2 = 3600 => BC = 60 (cm)
Vì M là trung điểm BC (gt) => MB = MC = BC : 2 = 60 : 2 = 30 (cm)
Vì △ABC ᔕ △MDC (cmt) \(\Rightarrow\frac{AB}{MD}=\frac{AC}{MC}\) \(\Rightarrow\frac{36}{MD}=\frac{48}{30}\)\(\Rightarrow MD=\frac{36.30}{48}=22,5\) (cm)
và \(\frac{AC}{MC}=\frac{BC}{DC}\)\(\Rightarrow\frac{48}{30}=\frac{60}{DC}\)\(\Rightarrow DC=\frac{30.60}{48}=37,5\) (cm)
c, Xét △BME vuông tại M và △BAC vuông tại A
Có: ∠MBE là góc chung
=> △BME ᔕ △BAC (g.g)
\(\Rightarrow\frac{BM}{AB}=\frac{BE}{BC}\) \(\Rightarrow\frac{30}{36}=\frac{BE}{60}\)\(\Rightarrow BE=\frac{30.60}{36}=50\) (cm)
Vì M là trung điểm BC (gt) mà ME ⊥ BC (gt)
=> ME là đường trung trực BC
=> EC = BE
Mà BE = 50 (cm)
=> EC = 50 (cm)
e, Ta có: \(\frac{S_{\text{△}MDC}}{S_{\text{△}ABC}}=\frac{\frac{1}{2}.MD.MC}{\frac{1}{2}.AB.AC}=\frac{22,5.30}{36.48}=\frac{675}{1728}=\frac{25}{64}\)
P/s: Sao nhiều câu cùng tính EC vậy? Pls, không làm loãng câu hỏi
Bài làm
@Mấy bạn bên dưới: nghiêm cấm không trả lời linh tinh, nhất bạn luffy toán học, bạn rảnh đến nỗi cũng hùa theo họ mà spam linh tinh à.
a) Xét tam giác ABC và tam giác MDC có:
\(\widehat{BAC}=\widehat{DMC}=90^0\)
\(\widehat{BCA}\)chung
=> Tam giác ABC ~ tam giác MDC ( g - g )
b) Xét tam giác ABC vuông tại A có:
Theo pytago có:
BC2 = AB2 + AC2
hay BC2 = 362 + 482
hay BC2 = 1296 + 2304
=> BC2 = 3600
=> BC = 60 ( cm )
Mà M là trung điểm BC
=> BM = MC = BC/2 = 60/2 = 30 ( cm )
Vì tam giác ABC ~ tam giác MDC ( cmt )
=> \(\frac{AB}{MD}=\frac{BC}{DC}=\frac{AC}{MC}\)
hay \(\frac{36}{MD}=\frac{60}{DC}=\frac{48}{30}\)
=> \(MD=\frac{36.30}{48}=22,5\left(cm\right)\)
=> \(DC=\frac{60.30}{48}=37,5\left(cm\right)\)
c) Xét tam giác MBE và tam giác ABC có:
\(\widehat{BME}=\widehat{BAC}=90^0\)
\(\widehat{ABC}\)chung
=> Tam giác MBE ~ tam giác ABC ( g - g )
=> \(\frac{ME}{AC}=\frac{BM}{AB}\)
hay \(\frac{ME}{48}=\frac{30}{36}\Rightarrow ME=\frac{48.30}{36}=40\left(cm\right)\)
Xét tam giác MEC vuông tại M có:
EC2 = MC2 + ME2
hay EC2 = 302 + 402
=> EC2 = 900 + 1600
=> EC2 = 50 ( cm )
a) Vì tam giác MDC ~ Tam giác ABC
=> \(\frac{S_{\Delta MDC}}{S_{\Delta ABC}}=\left(\frac{MD}{AB}\right)^2=\left(\frac{22,5}{36}\right)^2=\left(\frac{5}{8}\right)^2=\frac{25}{36}\)
Câu c, d và câu đ giống nhau ?
đoạn thẳng nhé mng ơi :((( em type nhanh quá ạ
Bài 6. Cho tam giác ABC vuông tại A có AR = 5cm, AC = 12cm có 2 đường phân giác AD; BE cắt nhau tại I. Tính: a) Độ dài các đoạn thẳng AE và EC. b) Khoảng cách từ Iđến đường thẳng AC. c) Độ dài đường phân giác AD (làm tròn đến hàng phần trăm). d) Diện tích ADEI.