Cho tam giác ABC vuông tại A có AB < AC, đường phân giác BD.Từ D vẽ DE vuông góc với BC tại E .
1.Chứng minh ABD=EBD
2.Chứng minh AD<DC
3.Tia ED cắt tia BA tại N.Gọi N là trung điểm của CN.Chứng minh ba điểm B,D,M thẳng hàng
cho tam giác abc vuông tại a,tia phân giác của góc abc cắt ac tại điểm d,vẽ DE vuông góc với BC tại e.Tia ED và tia BA cắt nhau tại f
1) chứng minh tam giác abd=tam giác ebd
2)AE song song với FC
cho tam giác abc cân tại a( góc a nhỏ hơn 90độ) vẽ đường cao ad của tam giác abc .
a)chứng minh tam giác ABD = tam giác ACD, từ đó chứng minh D là trung điểm BC
b)từ D vẽ DE vuông góc với AB tại E(E thuộc AB),vẽ DF vuông góc với AC tại F(F thuộc AC).Chứng minh tam giác AEF cân
c) gọi I là trung điểm của AB, CI cắt AD tại K. Chứng minh CI + @AD lớn hơn 3AI.
a: Xét ΔABD vuông tại D và ΔACD vuông tại C có
AB=AC
AD chung
Do đó: ΔABD=ΔACD
=>DB=DC
=>D là trung điểm của BC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)
Do đó: ΔAED=ΔAFD
=>AE=AF
=>ΔAEF cân tại A
Cho tam giác ABC vuông tại A (AB<AC) , kẻ AH vuông góc với BC, phân giác của góc HAC cắt BC tại D
a/ Chứng minh tam giác ABD cân tại B
b/ Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh DE vuông góc AC
c/ Cho AB=15cm, AH=12cm. Tính AD
d/ Chứng minh AD>HE
(Không cần vẽ hình.)
Giúp mình ý d với ạ
Bài 3 (3 điểm). Cho tam giác ABC cân tại A có đường phân giác AD (D thuộc BC).
a) Chứng minh tam giác ABD = tam giác ACD
b) Kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (F thuộc AC). Chứng minh DE = DF
c) Chứng minh EF // BC;
d) Gọi điểm M là trung điểm của đoạn thẳng AF. Đường thẳng AD cắt đường thẳng EM và đường thẳng EF lần lượt tại H và O. Tim số đo góc BAC để OD =2.HO
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
cho tam giác ABC vuông tại A tia phân giác góc ABC cat AC tại D vẽ DE vuông góc với BC(E thuộc BC) AE cắt BD tại F đường thẳng vuông góc với BC tại B cắt CA tại M gọi I là giao điểm bất kỳ thuộc đường thẳng AB trên tia đối AB lấy J sao cho AJ=BI
a) chứng minh tam giác ABD = tam giác EBD và AD = DE
b) chứng minh AD<DC
c) chứng minh CF là trung tuyến của tam giác ACE
d) chứng minh RJ vuông góc JC
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
Bài 3 (3 điểm). Cho tam giác ABC cân tại A có đường phân giác AD (D thuộc BC).
a) Chứng minh tam giác ABD = tam giác ACD
b) Kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (F thuộc AC). Chứng minh DE = DF
c) Chứng minh EF // BC;
d) Gọi điểm M là trung điểm của đoạn thẳng AF. Đường thẳng AD cắt đường thẳng EM và đường thẳng EF lần lượt tại H và O. Tim số đo góc BAC để OD =2.HO
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Cho tam giác ABC vuông tại A có AB<AC, Kẻ AH vuông góc với BC, phân giác của góc HAC cắt BC tại D.
a, Chứng minh tam giác ABD cân tại B
b, Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh DE vuông góc với AC
c, Cho AB=15cm; AH=12cm. Tính AD
d, Chứng minh AH>HE
cho tam giác ABC vuông tại A có AB = 6cm AC = 8cm
a) tính độ dài cạnh BC
b) vẽ tia phân giác BD của góc ABC ( D thuộc AC ) từ D vẽ DE vuông góc với BC ( E thuộc BC ) chứng minh tam giác ABD=tam giác EBD
c)chứng minh BD là đường trung trực của đoạn thẳng FC
Các bạn chỉ cần làm giúp mình câu 3 thôi nhéa) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
cre baji
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc B cắt AC tại D trên cạnh BC lấy điểm E sao cho BE =BA vẽ AH vuông góc với BC tại H
a chứng minh tam giác ABD = tam giác EBD và AD = ED
b chứng minh AH song song với DE
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=góc BAD=90 độ
b; AH vuông góc BC
DE vuông góc BC
=>AH//DE