Chứng minh đa thức x2016-x2015+x2-x+1 không có nghiệm
Một bạn nhờ mình đăng hộ ( phan thuy anh )
Tìm N(2017) biết đa thức N(x)=x2017−2018.x2016+2018.x2015−2018.x2014+........−2018.x2+2018.x−1
1/ Chứng minh M(x)= -x2 + 5 không có nghiệm.
2/ Tìm hệ số a của đa thức M(x)= a x2 + 5 x - 3, biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
Cho đa thức M(x) = x2 - x + 2023 . Chứng minh đa thức M(x) không có nghiệm.
Lời giải:
$M(x)=x^2-x+2023=(x^2-x+\frac{1}{4})+\frac{8091}{4}=(x-\frac{1}{2})^2+\frac{8091}{4}$
Vì $(x-\frac{1}{2})^2\geq 0$ với mọi $x$ nên $M(x)\geq \frac{8091}{4}>0$ với mọi $x$
$\RIghtarrow M(x)\neq 0$ với mọi $x$ nên $M(x)$ không có nghiệm.
Chứng minh đa thức Q(x) = x2 +5x - 3 không có nghiệm với mọi giá trị x
Đặt Q(x) = 0
=> x2 + 5x - 3 = 0
=> x2 + 5x = 3
=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)
Đặt Q(x) = 0
=> x2 + 5x - 3 = 0
=> x2 + 5x = 3
=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)
Chứng tỏ đa thức f(x)=x2-x+1 không có nghiệm.
Ta có:
x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy f(x)≥\(\dfrac{3}{4}\)∀ x
=>f(x) vô nghiệm
\(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Rightarrow\)Đa thức vô nghiệm
\(x^2-x+1\)
= \(x^2-0,5\cdot x-0,5\cdot x+1\)
= \(x\left(x-0,5\right)-0,5\left(x-0,5\right)+0,75\)
=\(\left(x-0,5\right)^2+0,75\)
vì (x-0,5)^2 \(\ge\) 0 với mọi x
=> \(\left(x-0,5\right)^2+0,75>0\)
=> f vô nghiệm
Khẳng định nào sau đây là đúng?
(A) Đa thức 5x5 không có nghiệm;
(B) Đa thức x2 - 2 không có nghiệm;
(C) Đa thức x2 + 2 có nghiệm x = -1;
(D) Đa thức x có nghiệm x = 0
Đáp án đúng là (D) Đa thức x có nghiệm x = 0.
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Xét đa thức P(x)=ax+b. Chứng minh rằng nếu P(x) có hai nghiệm x1,x2 khác nhau thì a=b=0 (hay P(x) là đa thức không)
Chứng minh rằng đa thức P(x)=x2+x−2021x2+x−2021 Không có nghiệm nguyên
Cho đa thức P(x)= x2 - 6x + 12. Chứng tỏ rằng đa thức trên không có nghiệm
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm