Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Khánh
Xem chi tiết
Pham Van Hung
3 tháng 10 2018 lúc 21:33

\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-8\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)

Đặt \(x^2+5x+5=t\)

Khi đó: \(A=\left(t-1\right)\left(t+1\right)-8\)

              \(=t^2-9=\left(t-3\right)\left(t+3\right)\)

              \(=\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)

Chúc bạn học tốt.

Thu Thủy vũ
3 tháng 10 2018 lúc 21:40

A=\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-8\)

A=\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-8\)

A=\(\left(x^2+5x +4\right)\left(x^2+5x+6\right)-8\)

Đặt \(x^2+5x+4=x\)ta có:

x(x+2)-8=\(x^2+2x-8\)=\(\left(x+1\right)^2-9\)=(x+1-3)(x+1+3)=(x-2)(x+4)=\(\left(x^2+5x+4-2\right)\left(x^2+5x+4+4\right)\)=\(\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)

Lê Thùy Dung
Xem chi tiết
Uzumaki Naruto
3 tháng 9 2016 lúc 15:52

(x+1)(x+2)(x+3)(x+4)-8

=[(x+1).(x+4)].[(x+2).(x+3)]-8

=(x2+5x+4).(x2+5x+6)-8

Đặt (x2+5x+4)=t =>(x2+5x+6)=t+2

Thay vào biểu thức ta có:

(x2+5x+4).(x2+5x+6)-8

t.(t+2)-8

=t2+2t+1-9

=(t+1)2-32

=(x2+5x+4+1)-32

=(x2+5x+5+3).(x2+5x+5-3)

=(x2+5x+8).(x2+5x+2)

=

Đoàn Ngọc Minh Hiếu
3 tháng 9 2016 lúc 15:57

ta làm như sau : 

\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-8.\)

\(\Rightarrow\left(x^2+5X+4\right)\left(x^2+5x+6\right)-8\)

Đặt \(x^2+5x+4=t\)

\(\Leftrightarrow t\left(t+2\right)-8\)

\(\Leftrightarrow t^2+2t-8\Leftrightarrow t^2+2t+1-9\)

\(\Leftrightarrow\left(t+1\right)^2-3^2\)

\(\Leftrightarrow\left(t-2\right)\left(t+4\right)\)

\(\Leftrightarrow\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)

Trần Thu Trang
Xem chi tiết
Nguyễn Huy Tú
26 tháng 8 2021 lúc 14:02

a, Cách 1 : \(x^2+5x+6=x^2+2x+3x+6=\left(x+2\right)\left(x+3\right)\)

Cách 2 : \(x^2+5x+6=x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}+6\)

\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}=\left(x+2\right)\left(x+3\right)\)

b, Cách 1 : \(x^2-x-6=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\)

Cách 2 : \(x^2-x-6=x^2-x+\frac{1}{4}-\frac{1}{4}-6=\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=\left(x-3\right)\left(x+2\right)\)

c, Cách 1 : \(x^2+6x+8=x^2+4x+2x+8=\left(x+2\right)\left(x+4\right)\)

Cách 2 : \(x^2+6x+8=x^2+6x+9-1=\left(x+3\right)^2-1=\left(x+2\right)\left(x+4\right)\)

d, Cách 1 : \(x^2-2x-8=x^2+2x-4x-8=\left(x-4\right)\left(x+2\right)\)

Cách 2 : \(x^2-2x-8=x^2-2x+1-9=\left(x-1\right)^2-9=\left(x-4\right)\left(x+2\right)\)

Khách vãng lai đã xóa
trang
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 15:39

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

Trịnh Đình Thi
28 tháng 11 2021 lúc 10:48
Lol .ngudoots
Khách vãng lai đã xóa
Tiến Đạt
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 11 2021 lúc 14:09

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Nguyễn Thị Khánh Linh
Xem chi tiết
Nghia Nguyen
Xem chi tiết
Hermione Granger
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 21:57

a: \(x^4-2x^3+x^2-2x\)

\(=\left(x^4-2x^3\right)+\left(x^2-2x\right)\)

\(=x^3\left(x-2\right)+x\left(x-2\right)\)

\(=x\left(x-2\right)\left(x^2+1\right)\)

b: \(x^4+x^3-8x-8\)

\(=\left(x^4+x^3\right)-\left(8x+8\right)\)

\(=x^3\left(x+1\right)-8\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3-8\right)\)

\(=\left(x+1\right)\left(x-2\right)\left(x^2+2x+4\right)\)

Yukino Ayama
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2023 lúc 19:48

a: =64x^4+16x^2y^2+y^4-16x^2y^2

=(8x^2+y^2)^2-(4xy)^2

=(8x^2+y^2-4xy)(8x^2+y^2+4xy)

b: =x^8+2x^4+1-x^4

=(x^4+1)^2-x^4

=(x^4-x^2+1)(x^4+x^2+1)

=(x^4-x^2+1)(x^4+2x^2+1-x^2)

=(x^4-x^2+1)(x^2+1-x)(x^2+x+1)

c: =(x+1)(x^2-x+1)+2x(x+1)

=(x+1)(x^2-x+1+2x)

=(x+1)(x^2+x+1)

d: =(x^2-1)(x^2+1)-2x(x^2-1)

=(x^2-1)(x^2-2x+1)

=(x-1)^2*(x-1)(x+1)

=(x+1)(x-1)^3