Cho x là số nguyên. chứng minh rằng \(x^2+4x+5⋮̸3\) (2 coin cho ng trl đầu, đúng)
Tìm x nguyên: \(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\\\) (1 coin cho ng trl đầu, đúng)
-Sửa đề: x,y nguyên.
\(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\left(x\ne0;y\ne0;x\ne-1\right)\)
\(\Rightarrow x-\dfrac{1}{y}-\dfrac{4}{xy}+1=0\)
\(\Rightarrow\dfrac{x^2y}{xy}-\dfrac{x}{xy}-\dfrac{4}{xy}+\dfrac{xy}{xy}=0\)
\(\Rightarrow x^2y-x-4+xy=0\)
\(\Rightarrow xy\left(x+1\right)=x+4\)
\(\Rightarrow y=\dfrac{x+4}{x\left(x+1\right)}\)
-Vì x,y nguyên:
\(\Rightarrow\left(x+4\right)⋮\left[x\left(x+1\right)\right]\)
\(\Rightarrow\left(x+4\right)⋮x\) và \(\left(x+4\right)⋮\left(x+1\right)\)
\(\Rightarrow4⋮x\) và \(\left(x+1+3\right)⋮\left(x+1\right)\)
\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(3⋮\left(x+1\right)\)
\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x+1\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x\in\left\{0;-2;2;-4\right\}\)
\(\Rightarrow x\in\left\{2;-2;-4\right\}\)
*\(x=2\Rightarrow y=\dfrac{2+4}{2.\left(2+1\right)}=1\)
\(x=-2\Rightarrow y=\dfrac{-2+4}{-2.\left(-2+1\right)}=1\)
\(x=-4\Rightarrow y=\dfrac{-4+4}{-4.\left(-4+1\right)}=0\left(loại\right)\)
-Vậy các cặp số (x,y) là: \(\left(2,1\right);\left(-2,1\right)\)
Phân tích và tìm x: 3x3+6x2+6x=27 (3 coin cho ng trl đầu, đúng)
Tìm Tmin= \(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+...+\left|x-9\right|\)
5 coin cho ng trl đúng
Ta có:\(\left|x-1\right|\ge0;\forall x\)
\(\left|x+2\right|\ge0;\forall x\)
\(\left|x-3\right|\ge0;\forall x\)
\(\left|x+4\right|\ge0;\forall x\) ......
Cộng tất cả ta được:
\(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+...+\left|x-9\right|\ge0\)
\(\Rightarrow Min_T=0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\\x=-4.....\end{matrix}\right.\)
\(T=\left|9-x\right|+\left|x+8\right|+...+\left|3-x\right|+\left|x+2\right|+\left|x-1\right|\)
\(T\ge\left|9-x+x+8\right|+\left|7-x+x+6\right|+...+\left|3-x+x+2\right|+\left|x-1\right|\)
\(T\ge17+13+9+5+\left|x-1\right|\)
\(T\ge44+\left|x-1\right|\ge44\)
\(T_{min}=44\) khi \(x=1\)
cho đa thức P(x)=x^4-3x^3-4x^2+2x -1. Chứng minh rằng P(x) không có nghiệm là số nguyên
Giả sử đa thức P(x) có nghiệm nguyên
=>P(x) có nghiệm chia hết cho 1 hoặc -1
=>1 và -1 là nghiệm
+) Nếu x=1
⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1
⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1
⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1
⇒P(1)=−9≠0⇒P(1)=-9≠0
⇒x=1 không phải là nghiệm của P(x)P(x)
+) Nếu x=−1
⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1
⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1
⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1
⇒P(−1)=1≠0⇒P(-1)=1≠0
⇒x=−1 không phải là nghiệm của P(x)P(x)
Vậy P(x) không có nghiệm là số nguyên
1, Tìm số tự nhiên n để A=(n+5)(n+6) chia hết cho 6n
2, Cho đa thức f(x) = 5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3
Chứng tỏ đa thức trên không có nghiệm
3, Chứng minh rằng nếu x/(a+2b+c) = y/(2a+b-c) = z/(4a-4b+c)
Thì a/(x+2y+z) = b/(2x+y-z) = c/(4x-4y+z)
4, Cho p>3 . Chứng minh rằng nếu các số p, p+d, p+2d là các số nguyên tố thì d chia hết cho 6
5, Chứng minh rằng 5/(1.2.3) + 8/(2.3.4) + 11/(3.4.5) + ..... + 6038/( 2012.2013.2014) <2
1) Cho P= 1+x+x^2+....+x^10. Chứng minh rằng: xP-P = x^11-1?
2) Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ?
3) Chứng minh rằng hiệu các bình phương của hai số chẵn liên tiếp luôn chia hết cho 4?
4) Biết số tự nhiên n chia cho 8 dư 5. Khi đó n^2 chia cho 8 có dư bằng...?
5) Tìm giá trị x thỏa mãn: 4x(5x-1)+10(2-2x)=16?
6) Phân tích đa thức thành nhân tử: x^3+2x^2-11x-12?
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2