( x - 9 )\(^2\) = x + 1 biết x khác 9
Tìm x, biết:
a. 5/(x+1).(x+6)+3/(x+6).(x+9)+4/(x+9).(x+13)=x/(x+1).(x+13)
( Với x khác -1, x khác -6, x khác -9,x khác -13)
b. 2/(x-2).(x-5)+4/(x-5).(x-9)+6/(x-9).(x-15)-1/x-15=3/4
( Với x khác 2, x khác 5, x khác 9, x khác 15)
Bài 1 : Rút gọn
b) 1/x-3-1/x+3+2x/9-x2
c) x+1/x-2+4-5x/x3+4x:x-2/x2+44
Bài 2 Cho A=x3-1/(x-1)(x+2) ( với x khác 1; x khác -2)
a) Chứng tỏ biểu thức A=x3-1/(x-1)(x+2)biết x=-3
b) chứng tỏ để A=1
Câu 1:
b: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(\dfrac{1}{x-3}-\dfrac{1}{x+3}+\dfrac{2x}{9-x^2}\)
\(=\dfrac{1}{x-3}-\dfrac{1}{x+3}-\dfrac{2x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+3-x+3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\dfrac{2}{x+3}\)
c: ĐKXĐ: \(x\notin\left\{2;0\right\}\)
Sửa đề: \(\dfrac{x+1}{x-2}+\dfrac{4-5x}{x^3+4x}:\dfrac{x-2}{x^2+4}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x^2+4\right)}\cdot\dfrac{x^2+4}{x-2}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x-2\right)}\)
\(=\dfrac{x\left(x+1\right)+4-5x}{x\left(x-2\right)}=\dfrac{x^2+x-5x+4}{x\left(x-2\right)}\)
\(=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
Giúp mình nhé:
Cho 2 biểu thức: A= x-3/x+1 và B=6x/x^2-9 + x/x+3 ( đk X khác +- 3, x khác -1)
1, Rút gọn phân phức B
2, Biết P=A.B, Tìm các số nguyên để x để P là số nguyên.
1: \(B=\dfrac{6x+x^2-3x}{\left(x+3\right)\left(x-3\right)}=\dfrac{x^2+3x}{\left(x+3\right)\left(x-3\right)}=\dfrac{x}{x-3}\)
A=(căn củax/3+căn củax+2x/9-x):(cănx-1/
x-3căn của x-2/căn của x) ( x>0,x khác 9,x khác 25
2x - 9/ x^2 - 5x +6 - x+3/x-2 -2x +1/ 3 - x ( x khác 2, x khác 3)
\(=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\)
\(=\dfrac{2x-9-x^2+9+\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{-x^2+2x+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)
\(\dfrac{2x-9}{x^2-5x+6}-\dfrac{x+3}{x-2}-\dfrac{2x+1}{3-x}\left(ĐKXĐ:x\ne2,x\ne3\right)\)
\(=\dfrac{2x-9}{x^2-3x-2x+6}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\)
\(=\dfrac{2x-9}{x\left(x-3\right)-2\left(x-3\right)}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\)
\(=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\)
\(=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{x-2}+\dfrac{\left(2x+1\right)\left(x-2\right)}{x-3}\)
\(=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2-9}{x-2}+\dfrac{2x^2-4x+x-2}{x-3}\)
\(=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-2x+x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x\left(x-2\right)+x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x+1}{x-3}\)
Tìm x, biết:
a, ( a- 3) . x = a2 + 1 ( a khác 3)
b, ( a2x + x) = 2a2 - 3
c, a .x - x + 1 =a2 ( a khác 1)
d, a2x + 3ax + 9 =a2 ( a khác 0, a khác 3).
Cho biểu thức P=\(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
với x>=0 ; x khác 9; x khác 4
Rút gọn biểu thức P
giúp mình với
Bài làm:
Ta có:
\(P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(P=\frac{x-9-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\left[\frac{\left(9-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(P=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{-x+6\sqrt{x}+27+x-4\sqrt{x}+2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\div\frac{x+2\sqrt{x}+20}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x+2\sqrt{x}+20}\)
\(P=\frac{3\left(\sqrt{x}-2\right)}{x+2\sqrt{x}+20}=\frac{3\sqrt{x}-6}{x+2\sqrt{x}+20}\)
Chox,y,z khác 0> biết x/1=y/2=z/3. CMR (xyz)(1/x+4/y+9/z)=35
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)