Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trường Chính
Xem chi tiết
Nguyễn Quỳnh Anhh
Xem chi tiết
Nguyễn Huy Tú
17 tháng 7 2021 lúc 16:28

undefined

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:07

Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

Nguyễn Thị Vân Anh
Xem chi tiết
Lê Phạm Ngọc Linh
15 tháng 12 2014 lúc 21:04

A=1.2+2.3+3.4+.......+99.100
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100= 99.100.101
=> A = (99.100.101)/3
A = 333300

Nguyễn Dương Tùng Duy
Xem chi tiết
Nguyễn Dương Tùng Duy
Xem chi tiết
Nữ hoàng băng giá
Xem chi tiết
Sherlockichi Kudoyle
10 tháng 8 2016 lúc 18:27

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

     \(=1-\frac{1}{100}=\frac{99}{100}\)

Quốc Lê Minh
Xem chi tiết
Thúy Doãn
Xem chi tiết
Dang Van Anh
Xem chi tiết
Viên đạn bạc
10 tháng 6 2016 lúc 20:02

S = 1.2.3.4 + 2.3.4.5 + 3.4.5.6+...97.98.99.100

5S = (1.2.3.4+2.3.4.5+3.4.5.6+ ... + 97.98.99.100).5

5S = 1.2.3.4.(5-0) + 2.3.4.5.(6-1)+ 3.4.5.6(7-2)+......+ 97.98.99.100.(101-96)

 5S = (1.2.3.4.5 + 2.3.4.5.6 + 3.4.5.6.7 + ....+ 97.98.99.100.101) - (0.1.2.3.4 + 1.2.3.4.5 + 2.3.4.5.6+.....+96.97.98.99.100)

 5S = 97.98.99.100.101

 S= 97.98.99.100.101/5

 S=1901009880

Lee Min Ho club
10 tháng 6 2016 lúc 20:08

S=1*2*3*4+2*3*4*5+....+97*98*99*100

5S=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5

5S=1.2.3.4.(5-0)+2.3.4.5.(6-1)+...+97.98.99.100.(101-96)

5S=1.2.3.4.5-0.1.2.3.4+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100

5S=(1.2.3.4.5+2.3.4.5.6+...+97.98.99.100.101)-(0.1.2.3.4+1.2.3.4.5+...+96.97.98.99.100)

5S=97.98.99.100.101

S=9505049400:5=1901009880.

Trần Cao Anh Triết
10 tháng 6 2016 lúc 20:09

S = 1.2.3.4 + 2.3.4.5 + 3.4.5.6+...97.98.99.100

5S = (1.2.3.4+2.3.4.5+3.4.5.6+ ... + 97.98.99.100).5

5S = 1.2.3.4.(5-0) + 2.3.4.5.(6-1)+ 3.4.5.6(7-2)+......+ 97.98.99.100.(101-96)

5S = (1.2.3.4.5 + 2.3.4.5.6 + 3.4.5.6.7 + ....+ 97.98.99.100.101) - (0.1.2.3.4 + 1.2.3.4.5 + 2.3.4.5.6+.....+96.97.98.99.100)

5S = 97.98.99.100.101

S= 97.98.99.100.101/5

S=1901009880 

Nguyễn Anh Thư
Xem chi tiết
o0o ngốc 7A1 o0o
7 tháng 4 2016 lúc 5:07

mk bó tay sorry

456547

Phú Quý Lê Tăng
9 tháng 1 2021 lúc 23:10

Bạn nhìn thì cũng không quá khó để nhận ra quy luật trong S

\(\frac{1}{1},\)\(\frac{1+2}{2},\)\(\frac{1+2+3}{3},\)\(\frac{1+2+3+4}{4},\)..., \(\frac{1+2+...+100}{100},\)

Công thức tính tổng \(1+2+3+..+n\)(với \(n\)là số nguyên dương) là \(\frac{n\cdot\left(n+1\right)}{2}\)

Vì vậy mỗi số hạng trong \(S\)có thể rút gọn thành \(\frac{1+2+3+...+n}{n}=\frac{\frac{n\left(n+1\right)}{2}}{n}=\frac{n+1}{2}\)

Do đó

 \(S=\frac{\left(1+1\right)}{2}+\frac{\left(2+1\right)}{2}+\frac{\left(3+1\right)}{2}+..+\frac{\left(100+1\right)}{2}=\frac{1}{2}\left(2+3+4+..+101\right)\)

\(S=\frac{1}{2}\left(\frac{101\cdot102}{2}-1\right)=2575\)

Chúc bạn học tốt!
(P/S : giải thích dòng cuối : Tổng từ 2 tới 101? Lấy tổng từ 1 tới 101 rồi trừ đi 1 nếu không nhớ cách làm của Gauss nha, không thì cứ nhớ câu này "Dĩ đầu cộng vĩ, chiết bán nhân chi" (lấy đầu cộng cuối, chia 2, nhân số số hạng))

Khách vãng lai đã xóa