so sánh A=\(\left[\left(3^5\right)^2\right]^5\)với B=\(\left[\left(5^2\right)^5\right]^2\)
Cho x = 3,7.So sánh :
\(A=\left[x\right]+\left[x+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
và B = [5x]
\(A=x+\left(x+\frac{1}{5}\right)+\left(x+\frac{2}{5}\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{4}{5}\right)\)
\(=5x+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\)
\(=5x+2\)
\(B=5x\)
\(\Rightarrow A>B\)Với \(\forall\)\(x\)
#)Giải :
\(A=\left[x\right]+\left[1+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
Thay x = 3,7 vào biểu thức, ta có :
\(A=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)
\(A=\left[3,7+3,7+3,7+3,7+3,7\right]+\left[1+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right]\)
\(A=18,5+3\)
\(A=21,5\)
\(B=\left[5x\right]=\left[5\times3,7\right]=18,5\)
Vì 21,5 > 18,5 \(\Rightarrow A>B\)
Phạm Thị Thùy Linh+๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ):Cả 2 bạn đều nhầm chỗ \(\left[a\right]\) rồi nha.\(\left[a\right]\) tức là phần nguyên của a nghĩa là số nguyên lớn nhất ko vượt quá a.
\(A=\left[x\right]+\left[x+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
\(=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)
\(=3+3+4+4+4\)
\(=18\)
\(B=\left[5x\right]\)
\(B=\left[18,5\right]\)
\(=18\)
Vậy \(A=B\left(=18\right)\)
bài 1)Tính bằng 2 cách va so sánh kết quả:
\(a.\left(-8\right).\left(5+3\right)\)
\(b.\left(-3+3\right).\left(-5\right)\)
bài 2) thực hiện các phép tính:
\(a.15.\left(-2\right).\left(-5\right).\left(-6\right)\)
\(b.4.7.\left(-11\right).\left(-2\right)\)
toàn hỏi lung tung. lớp 6 mà còn ko biết làm mấy bài toán vớ vẩn kia
cho cac so thuc duong a b c thoa a^2+b^2+c^2>=3 chung minh
\(\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}+\frac{\left(b+1\right)\left(c+2\right)}{\left(c+1\right)\left(c+5\right)}+\frac{\left(c+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+5\right)}\ge\frac{3}{2}\)
Ta có đánh giá \(\frac{b+2}{\left(b+1\right)\left(b+5\right)}\ge\frac{3}{4\left(b+2\right)}\)
Thật vậy, BĐT trên tương đương:
\(4\left(b+2\right)^2\ge3\left(b+1\right)\left(b+5\right)\)
\(\Leftrightarrow b^2-2b+1\ge0\Leftrightarrow\left(b-1\right)^2\ge0\) (luôn đúng)
\(\Rightarrow\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}\ge\frac{3\left(a+1\right)}{4\left(b+2\right)}\)
Tương tự và cộng lại: \(P\ge\frac{3}{4}\left(\frac{a+1}{b+2}+\frac{b+1}{c+2}+\frac{c+1}{a+2}\right)\)
\(P\ge\frac{3}{4}\left(\frac{\left(a+1\right)^2}{ab+2a+b+2}+\frac{\left(b+1\right)^2}{bc+2b+c+2}+\frac{\left(c+1\right)^2}{ca+2c+a+2}\right)\)
\(P\ge\frac{3}{4}.\frac{\left(a+b+c+3\right)^2}{ab+bc+ca+3a+3b+3c+6}\)
\(P\ge\frac{3}{4}.\frac{a^2+b^2+c^2+2ab+2bc+2ca+6a+6b+6c+9}{ab+bc+ca+3a+3b+3c+6}\)
\(P\ge\frac{3}{4}.\frac{2ab+2bc+2ca+6a+6b+6c+12}{ab+bc+ca+3a+3b+3c+6}=\frac{3}{4}.2=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
SO SÁNH A VÀ B BIẾT :\(A=5^{32}\)
VÀ \(B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=5^{32}-1< 5^{32}\)
Vậy \(B< A\)
So sánh số a với số b nếu :
a) \(x< 5\Leftrightarrow\left(a-b\right)x< 5\left(a-b\right)\)
b) \(x>2\Leftrightarrow\left(a-b\right)x< 2\left(a-b\right)\)
a. Ta có: x < 5 ⇔ (a – b)x < 5(a – b)
⇒ a – b > 0 ⇔ a > b
b. Ta có: x > 2 ⇔ (a – b)x < 2(a – b)
⇒ a – b < 0 ⇔ a < b
So sánh :
a) \(\left(-7\right).\left(-5\right)\) với \(0\)
b) \(\left(-17\right).5\) với \(\left(-5\right).\left(-2\right)\)
c) \(\left(+19\right).\left(+6\right)\) với \(\left(-17\right).\left(-10\right)\)
Sách Giáo Khoa
So sánh:
a) (-7) . (-5) với 0; b) (-17) . 5 với (-5) . (-2);
c) (+19) . (+6) với (-17) . (-10).
Bài giải:
Thực hiện các phép tính rồi so sánh hai kết quả.
ĐS: a) (-7) . (-5) > 0 b) (-17) . 5 < (-5) . (-2);
c). (+19) . (+6) < (-17) . (-10).
a) (-7) . (-5) > 0
b) (-17) . 5 < (-5) . (-2);
c). (+19) . (+6) < (-17) . (-10).
Các bạn có thể tính toán ra kết quả rồi so sánh hoặc áp dụng:
Tích hai số cùng dấu thì dương.
Tích hai số khác dấu thì âm.
a) Tích gồm hai số nguyên cùng dấu nên kết quả là số dương.
Do đó: (-7).(-5) > 0
hoặc: (-7).(-5) = 35 > 0
b) (-17).5 là tích của hai số nguyên khác dấu nên < 0
(-5).(-2) là tích của hai số nguyên cùng dấu nên > 0
Do đó: (-17).5 < (-5).(-2)
hoặc: (-17).5 = -85; (-5).(-2) = 10
Vì -85 < 10
nên (-17).5 < (-5).(-2)
c) (+19).(+6) với (-17).(-10)
(+19).(+6) = 114; (-17).(-10) = 170
Vì 114 < 170
nên (+19).(+6) < (-17).(-10)
so sánh\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}v\text{à}\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)
\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\sqrt[3]{\left(1-\sqrt{3}\right)\left(\sqrt{3}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{3}\right)^3}\)=1-\(\sqrt{3}\)
\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}=\sqrt[3]{\left(1-\sqrt{5}\right)\left(\sqrt{5}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=1-\(\sqrt{5}\)
Ta thấy \(\sqrt{5}>\sqrt{3}\)nên 1-\(\sqrt{3}\)>\(1-\sqrt{5}\)
Vậy \(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}\)>\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)
Cho biểu thức D = \(\dfrac{\left(2!\right)^2}{1^2}\) + \(\dfrac{\left(2!\right)^2}{3^2}\) + \(\dfrac{\left(2!\right)^2}{5^2}\) + ... + \(\dfrac{\left(2!\right)^2}{2015^2}\)
Tính D rồi so sánh D với 6.
\(D=\dfrac{\left(2!\right)^2}{1^2}+\dfrac{\left(2!\right)^2}{3^2}+\dfrac{\left(2!\right)^2}{5^2}+...+\dfrac{\left(2!\right)^2}{2015^2}\)
\(D=\left(2!\right)^2\left(\dfrac{1}{3^2}+\dfrac{1}{5^2}+...+\dfrac{1}{2015^2}\right)\)
Xét số hạng tổng quát dạng: \(\dfrac{1}{\left(2n+1\right)^2}\) với \(n\in N\ge1\)
Ta có: \(\left(2n+1\right)^2-2n\left(2n+1\right)=1>0\)
\(\Rightarrow\left(2n+1\right)^2>2n\left(2n+1\right)\Rightarrow\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{2n\left(2n+1\right)}\)
Do đó: \(\left\{{}\begin{matrix}\dfrac{1}{3^2}< \dfrac{1}{2.4}\\\dfrac{1}{5^2}< \dfrac{1}{4.6}\\....\\\dfrac{1}{2015^2}< \dfrac{1}{2014.2016}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}...+\dfrac{1}{2015^2}< 1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2014.2016}\)
\(\Leftrightarrow\dfrac{D}{\left(2!\right)^2}< 1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+..+\dfrac{1}{2014.2016}\)
\(\Leftrightarrow D< 4\left(1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2014.2016}\right)\)
\(\Leftrightarrow D< 4+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{1007.1008}\)
\(\Leftrightarrow D< 4+\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{1008-1007}{1007.1008}\)
\(\Leftrightarrow D< 4+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{...1}{1007}-\dfrac{1}{1008}\)
\(\Leftrightarrow D< 5-\dfrac{1}{1008}< 5< 6\)
Cmr nếu a+b+c=0 thì:
a) \(10\left(a^7+b^7+c^7\right)=7\left(a^2+b^2+c^2\right)\left(a^5+b^5+c^5\right)\)
b) \(a^5\left(b^2+c^2\right)+b^5\left(c^2+a^2\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)