Cho tam giác ABC , gọi E là trung điểm của AB
Qua E kẻ EF//BC (F€AC) . Chứng minh rằng AF=FC
Cho tam giác ABC , gọi E là trung điểm của AB
Qua E kẻ EF//BC (F€AC) . Chứng minh rằng AF=FC
Bạn dùng phương pháp đường trung bình thì sẽ ra thôi mà:
Đây là bài giải tham khảo nhé
Xét \(\Delta\) ABC , có :
EF // BC
E là trung điểm của AB
=> EF là đường trung bình của tam giác ABC
=>F là trung điểm của AC
=> AF =FC (đpcm)
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc với BC (E thuộc BC).
a) Chứng minh rằng AD = ED.
b) Gọi F là giao điểm của AB và DE. Chứng minh AF = EC.
c) Chứng minh AE // FC.
a) Xét ΔABD và ΔEBD có
BD là phân giác => góc ABD = góc EBD
BD chung
Góc BAD = góc BED =90o
=> ΔABD = ΔEBD (ch-gn)
=>AD=ED(2 cạnh tương ứng)
b) xét ΔADF và ΔEDC có
Góc DAF= góc DEC=90o
AD=ED (cmt)
Góc ADF=EDC( đối đỉnh)
=>ΔADF = ΔEDC (gcg)
=> AF=EC(2 cạnh tương ứng)
c) ta có ΔABD = ΔEBD (cmt)
=> AB = EB (2 cạnh tương ứng)
=> ΔBAE cân tại B
=> \(\widehat{BAE}=\widehat{BEA}=\)\(\dfrac{180 - \widehat{B}}{2}\)(1)
ta lại có AF=EC (cmt)
=> AB+AF=BE+EC
=> BF=BC
=> ΔBFC cân tại B
=>\(\widehat{BFC}=\widehat{BCF}=\dfrac{180-\widehat{B}}{2}\)(2)
từ (1) và (2) => \(\widehat{BFC}\)=\(\widehat{BAE}\) mà 2 góc ở vị trí đồng vị
=> AE//FC
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: AD=ED(Hai cạnh tương ứng)
cho tam giác ABC. điểm D thuộc BC , kẻ DE// AC [E thuộc AB] , kẻ DF //AB [F thuộc AC ] gọi I là trung điểm của EF. chứng minh rằng I là trung điểm của AB
Vì DF // AE (DF//AB; E \(\in AB\)) nên \(\widehat{AEF}=\widehat{EFD}\) (2 góc so le trong)
Hay \(\widehat{AEI}=\widehat{IFD}\) ( I \(\in EF\) )
Xét \(\Delta AEI\) và \(\Delta DFI\) có:
\(\widehat{AEI}=\widehat{IFD}\) (c/m trên)
IE=IF(I là trung điểm của EF)
\(\widehat{AIE}=\widehat{DIF}\) (2 góc đối đỉnh)
=> \(\Delta AEI=\Delta DFI\left(g.c.g\right)\)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
Cho tam giác ABC cân tại A, trên cạnh AC lấy điểm E, kẻ EF vuông góc với AB tại F. Gọi D là giao điểm của EF và BC. Biết AF = CD, chứng minh rằng SAEF = 2SCD
Bài 7: Cho tam giác ABC. Gọi E trung điểm AB. Qua E kẻ đường thẳng song song với BC cắt AC
tại F. Chứng minh rằng:
a) F là trung điểm AC b) EF = 1⁄2 BC.
a) Xét ΔABC có
E là trung điểm của AB(gt)
EF//BC(gt)
Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
b) Xét ΔABC có
E là trung điểm của AB(gt)
F là trung điểm của AC(cmt)
Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: \(EF=\dfrac{1}{2}BC\)(Định lí 2 về đường trung bình của tam giác)
Cho tam giác ABC cân tại A có M là trung điểm BC. Kẻ Mx // AC cắt AB tại E, kẻ My // AB cắt AC tại F. Chứng minh rằng: 1) E, F là trung điểm của AB và AC. 2) EF = 1 2 BC. 3) ME = MF, AE = AF.
đaay nhé tham khảo phần c thì mik ko bt
cho tam giác ABC , điểm D thuộc cạnh BC . Kẻ DE // AC, DF //AB (E thuộc AB / F thuộc AC ) . Gọi y là trung điểm của EF . Chứng minh rằng y là trung điểm của AD.
Vì DF // AE (DF//AB; E ) nên (2 góc so le trong)
Hay ( I )
Xét và có:
(c/m trên)
IE=IF(I là trung điểm của EF)
(2 góc đối đỉnh)
=>
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
Vì DF // AE (DF//AB; E ∈AB∈AB) nên ˆAEF=ˆEFDAEF^=EFD^ (2 góc so le trong)
Hay ˆAEI=ˆIFDAEI^=IFD^ ( I ∈EF∈EF )
Xét ΔAEIΔAEI và ΔDFIΔDFI có:
ˆAEI=ˆIFDAEI^=IFD^ (c/m trên)
IE=IF(I là trung điểm của EF)
ˆAIE=ˆDIFAIE^=DIF^ (2 góc đối đỉnh)
=> ΔAEI=ΔDFI(g.c.g)ΔAEI=ΔDFI(g.c.g)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
cho tam giác ABC , điểm D thuộc cạnh BC . Kẻ DE // AC, DF //AB (E thuộc AB / F thuộc AC ) . Gọi y là trung điểm của EF . Chứng minh rằng y là trung điểm của AD.