Học tại trường Chưa có thông tin
Đến từ Hà Nội , Chưa có thông tin
Số lượng câu hỏi 11
Số lượng câu trả lời 58
Điểm GP 21
Điểm SP 86

Người theo dõi (28)

nguyenlinhchi
lu nguyễn

Đang theo dõi (29)

Xulola Xu
Huyền Anh
Hoang Hung Quan

Câu trả lời:

a, Đặt \(\left\{{}\begin{matrix}a=x^3\\b=y^3\end{matrix}\right.\), hpt trên trở thành:

\(\left\{{}\begin{matrix}a+b=7\\ab=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-1\\b=8\end{matrix}\right.\\\left\{{}\begin{matrix}a=8\\b=-1\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}a=-1\\b=8\end{matrix}\right.\) , ta có: \(\left\{{}\begin{matrix}x^3=-1\\y^3=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}a=8\\b=-1\end{matrix}\right.\), ta có: \(\left\{{}\begin{matrix}x^3=8\\y^3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy hpt đã cho có nghiệm (x;y) là: (-1;2);(2;-1)

b, Câu này hình như sai đề bạn à, nếu sửa đề thì theo mình sẽ là:

\(\left\{{}\begin{matrix}x^2+x+y^2+y=7\\x\left(x+1\right). y\left(y+1\right)=12\end{matrix}\right.\)

Khi đó, hpt \(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=7\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=x^2+x\\b=y^2+y\end{matrix}\right.\), hpt trên trở thành:

\(\left\{{}\begin{matrix}a+b=7\\ab=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\\\left\{{}\begin{matrix}a=4\\b=3\end{matrix}\right.\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\), ta có: \(\left\{{}\begin{matrix}x^2+x=3\\y^2+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1\pm\sqrt{13}}{2}\\y=\dfrac{-1\pm\sqrt{17}}{2}\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}a=4\\b=3\end{matrix}\right.\) , ta có \(\left\{{}\begin{matrix}x=\dfrac{-1\pm\sqrt{17}}{2}\\y=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\) (chỗ này làm tắt vì nó dài quá :p)

Vậy hpt đã cho có nghiệm (x;y) là:

\(\left(\dfrac{-1\pm\sqrt{13}}{2};\dfrac{-1\pm\sqrt{17}}{2}\right);\left(\dfrac{-1\pm\sqrt{17}}{2};\dfrac{-1\pm\sqrt{13}}{2}\right)\)