Cho x ;y không âm thỏa \(xy+x+y=8\). Tìm max \(x^2+y^2\).
Vì x; y không âm nên ta có ngay \(xy\ge0\) \(\Rightarrow8\ge x+y\)
\(x^2+y^2=\left(x+y\right)^2-2xy\le64\)
Dấu = xảy ra khi (x;y) = (8;0); (0;8)
\(x^2+y^2\\ =\dfrac{1}{3}\left(x^2+4+y^2+4\right)+\dfrac{2}{3}\left(x^2+y^2\right)-\dfrac{8}{3}\\ \ge\dfrac{4}{3}\left(x^2+y^2+xy\right)-\dfrac{8}{3}=8\)
Vây Min A = 8 khi x=y=2