Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
 ๛๖ۣۜMĭη²ƙ⁸࿐
Xem chi tiết
Kudo Shinichi
1 tháng 10 2019 lúc 20:11

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

\(ĐK:x\ge5\)

BPT \(\Leftrightarrow x^2-7x+2-2\sqrt{x^2-7x+10}< 0\)

\(\Leftrightarrow t^2-8-2t< 0\left(t=\sqrt{x^2-7x+10}\ge0\right)\)

\(\Leftrightarrow\left(t+2\right)\left(t-4\right)< 0\)

\(\Leftrightarrow-2< t< 4\Leftrightarrow-2< \sqrt{x^2-7x+10}< 4\)

\(\Leftrightarrow\sqrt{x^2-7x+10}< 4\Leftrightarrow x^2-7x-6< 0\)

\(\Leftrightarrow\orbr{\begin{cases}5\le x< \frac{7+\sqrt{73}}{2}\\\frac{7-\sqrt{73}}{2}< x\le2\end{cases}}\)

Chúc bạn học tốt !!!

 ๛๖ۣۜMĭη²ƙ⁸࿐
Xem chi tiết
Kudo Shinichi
28 tháng 9 2019 lúc 20:51

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

ĐKXĐ: \(x\ge5\)

Ta có BĐT \(\Leftrightarrow x^2-2\sqrt{x^2-7x+10}-7x+2< 0\)

\(\Leftrightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1-9< 0\)

\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-1\right)^2-9< 0\)

\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-4\right)\left(\sqrt{x^2-7x+10}-2\right)< 0\)

Vì \(\sqrt{x^2-7x+10}\ge0\Rightarrow\sqrt{x^2-7x+10}< 4\)

\(\Leftrightarrow x^2-7x+10< 16\)

\(\Leftrightarrow x^2-7x-6< 0\)

Chúc bạn học tốt !!!

Nguyễn Văn Tuấn Anh
28 tháng 9 2019 lúc 20:51

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

\(\Rightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1< 9\)

\(\Rightarrow\left(\sqrt{x^2-7x+10}-1\right)^2< 9\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}-1< 3\\\sqrt{x^2-7x+10}-1< -3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}< 4\\\sqrt{x^2-7x+10}< -2\left(L\right)\end{cases}}\)

\(\Rightarrow x^2-7x+10=16\)

\(\Rightarrow x^2-2x-5x+10=16\)

\(\Rightarrow\left(x-2\right)\left(x-5\right)=16\)

...........................

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
30 tháng 10 2023 lúc 16:03

\(\Leftrightarrow x^2-4x+3>0\left(x\ne\pm5\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>3\end{matrix}\right.\)

Akai Haruma
30 tháng 10 2023 lúc 18:44

Lời giải:
ĐK: $25-x^2>0\Leftrightarrow -5< x< 5$
$\frac{x^2-4x+3}{\sqrt{25-x^2}}>0$

$\Leftrightarrow x^2-4x+3>0$ (do $\sqrt{25-x^2}>0$)

$\Leftrightarrow (x-1)(x-3)>0$

$\Leftrightarrow x>3$ hoặc $x<1$

Kết hợp với đkxđ suy ra $3< x< 5$ hoặc $-5< x< 1$

vvvvvvvv
Xem chi tiết
Akai Haruma
1 tháng 3 2021 lúc 14:05

Lời giải:

a) ĐK: $x\geq 0$

BPT $\Leftrightarrow \sqrt{x+2}(\sqrt{2}-1)\leq \sqrt{x}$

$\Leftrightarrow (3-2\sqrt{2})(x+2)\leq x$

$\Leftrightarrow x(2-2\sqrt{2})\leq 2(2\sqrt{2}-3)$

$\Leftrightarrow x\geq \frac{2(2\sqrt{2}-3)}{2-2\sqrt{2}}=-1+\sqrt{2}$

Vậy BPT có nghiệm $x\geq -1+\sqrt{2}$

b) ĐK: $x\geq 2$ hoặc $x\leq -2$

BPT $\Leftrightarrow (x-5)\sqrt{x^2-4}-(x-5)(x+5)\leq 0$

$\Leftrightarrow (x-5)[\sqrt{x^2-4}-(x+5)]\leq 0$Ta có 2 TH:

TH1: 

\(\left\{\begin{matrix} x-5\geq 0\\ \sqrt{x^2-4}-(x+5)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ \sqrt{x^2-4}\leq x+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ x^2-4\leq x^2+10x+25\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ 29\leq 10x\end{matrix}\right.\Leftrightarrow x\geq 5\)

TH2: 

\(\left\{\begin{matrix} x-5\leq 0\\ \sqrt{x^2-4}-(x+5)\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\leq 5\\ x^2-4\geq x^2+10x+25 \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ -29\geq 10x\end{matrix}\right.\)

 \(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ x\leq \frac{-29}{10}\end{matrix}\right.\Leftrightarrow x\leq \frac{-29}{10}\)

Kết hợp đkxđ suy ra $x\geq 5$ hoặc $x\leq \frac{-29}{10}$

Rộp Rộp Rộp
Xem chi tiết
Phan Nghĩa
1 tháng 8 2020 lúc 20:24

bình phương 2 vế ?

a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)

\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)

\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)

\(< =>x^2-5x+6=x^2-30x+225\)

\(< =>25x-219=0\)

\(< =>x=\frac{219}{25}\)

Khách vãng lai đã xóa
Nguyễn Đức Việt
Xem chi tiết
Akai Haruma
29 tháng 4 2023 lúc 16:10

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

Akai Haruma
29 tháng 4 2023 lúc 16:47

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

Nguyễn Đức Việt
29 tháng 4 2023 lúc 17:11

Nãy mình tìm được một cách giải tương tự cho câu 2.

PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)

Vậy pt có 1 nghiệm bằng 1.

\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)

\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)

\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)

\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)

Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)

Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))

Fire Sky
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 5:01

ĐKXĐ: \(3\le x\le5\)

\(2x^2-7x-2-\sqrt{x-3}-\sqrt{5-x}=0\)

\(\Leftrightarrow2x^2-7x-4+1-\sqrt{x-3}+1-\sqrt{5-x}=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+1\right)-\dfrac{x-4}{1+\sqrt{x-3}}+\dfrac{x-4}{1+\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+1-\dfrac{1}{1+\sqrt{x-3}}+\dfrac{1}{1+\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+\dfrac{\sqrt{x-3}}{1+\sqrt{x-3}}+\dfrac{1}{1+\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow x-4=0\) (ngoặc to luôn dương)

\(\Leftrightarrow x=4\)