Giải bất phương trình \(\sqrt{5x-1}+\sqrt[3]{9-x}\ge2x^2+3x-1\)
giải bất phương trình : \(\sqrt{3x^2+5x+7}-\sqrt{3x^2+5x+2}\)>=1
giải các bất phương trình sau :
a) \(\left|x^2-2x-3\right|\le3x-3\)
b)\(\frac{2x-4}{\sqrt{x^2-3x-10}}>1\)
c)\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)
d)\(\left(2x-5\right)\sqrt{2x^2-5x+2}\le0\)
e)\(\left(x+1\right)\left(x+4\right)< 5\sqrt{x^2+5x+28}\)
f)\(\sqrt{3x^2+5x+7}-\sqrt{3x^2+5x+2}\ge1\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)
Giải phương trình :
a ) \(\sqrt{7x+1}-\sqrt{x}=6x\)
b ) \(\sqrt{x^2+5x+4}=\sqrt{x^2+3x}+2x\)
Tìm tập nghiệm của bất phương trình:\(2\left(x-4\right)\sqrt{2x+1}\ge x\sqrt{x^2+1}+x^3+x^2-3x-8\)
Bài 1 : giải các phương trình sau
1 , \(\left(x^2-6x\right)\sqrt{17-x^2}=x^2-6x\)
2 , \(\left(x^2+5x+4\right)\sqrt{x+3}=0\)
3, \(\sqrt{3x}+\sqrt{2x-2}=\sqrt{1-x}+2\)
4, \(\left(x^2-4x+3\right)\sqrt{x-2}=0\)
5 , \(\sqrt{x^2+3x-2}=\sqrt{1+x}\)
6 , \(\left(\sqrt{x-4}-1\right)\left(x^2-7x+6\right)=0\)
7, \(\sqrt{2x^2-8x+4}=x-2\)
8 , \(\sqrt{3x+7}-\sqrt{x+1}=2\)
Giair các bất phương trình sau
a) \(\sqrt{X+1}>3-\sqrt{X+4}\)
b)\(\sqrt{2x+7}\sqrt{5-x}< \sqrt{3x-2}\)
c)\(\sqrt{2x+3}>\sqrt{4x^2-3x-3}\)
d) (x+1)(x+4) < \(5\sqrt{x^2+5x+28}\)
giải các BPT :
1. \(\sqrt{x^2-3x+2}+\sqrt{x^2-3x+16}>3\)
2.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}\le2x+2\)
3.\(\sqrt{2x-1}+\sqrt{3x-2}< \sqrt{4x-3}+\sqrt{5x-4}\)