( x -3 ) - ( 10 - 5x ) = 0
a) 5x+3=2x-8
b) 6x-3(x+2)=5x+3
c) (3x-9)(5x+10)=0
d) 8x(x+2)+16(x+2)=0
e) x2 -12x+35=0
a) 5x +3=2x-8 <=>5x-2x=-8-3 <=>3x=-11 <=> x=\(\dfrac{-11}{3}\)
b)6x-3(x+2)=5x+3<=> (6-3-5)x-9=0 <=> x=\(\dfrac{-9}{2}\)
c) (3x-9)(5x+10)=0<=> \(\left[{}\begin{matrix}3x-9=0\\5x+10=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d)8x(x+2)+16(x+2)=0<=>(x+2)(8x+16)=0<=>\(\left[{}\begin{matrix}x=-2\\x=-2\end{matrix}\right.\)
e)x2 -12x+35=0 <=>\(\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)
A= 5x+ /5-x/+ 5 khi x<5
B= 5x+10+/3x/ khi x ≥ 0 và x< 0
C= /x-3/ -3x+15 khi x≤0 và x>0
D=/x-3/ - 3x+ 15 khi x≥3 và x< 3
E= 5x+6+ /x+2/ khi x≥-2 và x<-2
HELPPPPPPP!!!!!!!!!!!!!!!!!!!!!!
a: x<5 thì 5-x>0
A=5x+5-x+5=4x+10
b: Khi x>=0 thì \(B=5x+10+3x=8x+10\)
Khi x<0 thì B=5x+10-3x=2x+10
d: Khi x>=3 thì \(D=x-3-3x+15=-2x+12\)
Khi x<3 thì D=3-x-3x+15=-4x+18
Bài 3
1.(x-1)(x+2)+5x-5=0
2.(3x+5)(x-3)-6x-10=0
3.(x-2)(2x+3)-7x2+14x=0
4.(x+1)(x-3)-15+5x=0
5.5(2x-1)(x+3)+5x-10x2=0
Bài4
1.3x-6+(x+1)(x-2)=0
2.4x2+6x-(2x+3)(3x-x)=0
3.5x-10-(2-x)(4+x)=0
4.10-10x+(x-1)(x-3)=0
5.20x2+30x-2(x-5)(2x+3)=0
Bài 3:
1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy.......................
2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
Vậy........................
3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy............................
4, 5 tương tự nhé bn!
bài 3
1 (x-1)(x+2)+5x-5=0
=>(x-1)(x+2)+(5x-5)=o
=>(x-1)(x+2)+5(x-1)=0
=>(x-1)(x+2+5)=0
=>(x-1)(x+7)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
vậy x=1 hoặc x=-7
2. (3x+5)(x-3)-6x-10=0
=>(3x+5)(x-3)-(6x+10)=0
=>(3x+5)(x-3)-2(3x+5)=0
=>(3x+5)(x-3-2)=0
=>(3x+5)(x-5)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
a, ( x + 5 ) ( 2x - 4 ) = 0
b, ( x - 3 ) ( 5x - 10 ) = 0
a) (x + 5)(2x - 4) = 0
x + 5 = 0 hoặc 2x - 4 = 0
*) x + 5 = 0
x = -5
*) 2x - 4 = 0
2x = 4
x = 4 : 2
x = 2
Vậy x = -5; x = 2
b) (x - 3)(5x - 10) = 0
x - 3 = 0 hoặc 5x - 10 = 0
*) x - 3 = 0
x = 3
*) 5x - 10 = 0
5x = 10
x = 10 : 5
x = 2
Vậy x = 2; x = 3
A , x+5 hoặc 2x-4 =0
tương tự bài b
CHÚC BẠN HỌC TỐT
Giải pt
a. x4 + 2x3 - 4x2 - 2x + 1 = 0
b. 2x4 + 5x3 + x2 + 5x + 2 = 0
c. x4 - 5x3 + 6x2 +5x + 1 = 0
d.(x -4)(x - 5)(x - 8)(x - 10) = 72x2
e. (x + 10)(x + 12)(x +15)(x + 18) = 2x2
\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)
\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)
Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d
b) \(2x^4+5x^3+x^2+5x+2=0\)
Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:
\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)
\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)
\(\Leftrightarrow2y^2+5y-3=0\)
PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3
Với y=1/2 thì không tìm được x
Với y=-3 thì tìm được 2 nghiệm, tự giải
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
X(x-3) + x-3 = 0
X3 - 5x = 0
6x2 -(2x+5)(3x-2)=-12
(X+3)(x2-3x+9)- x(x2+2)= 12-5x
X2-25 = 6x-9
3x(x-10)= x-10
X2 + 5x -24=0
(2-x)(x2 +2x +4) - x(x-3)(3+x)= 8
tích mình đi
ai tích mình
mình tích lại
thanks
\(x\left(x-3\right)+x-3=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
KL:......................
\(x^3-5x=0\)
\(x\left(x^2-5\right)=0\)
Làm tương tự như câu a
@_@ n...h..i......ề....u q...u.....................á!
Giải các PT sau:
a,(5x-4)(4x+6)=0 b,(3,5x-7)(2,1x-6,3)=0
c,(4x-10)(24+5x)=0 d,(x-3)(2x+1)=0
e,(5x-10)(8-2x)=0 f,(9-3x)(15+3x)=0
a) ( 5x - 4)(4x + 6)=0
<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)
Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)
b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0
<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)
Vậy S = \(\left\{2;3\right\}\)
c) ( 4x - 10 )( 24 + 5x ) = 0
<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)
Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
d) ( x - 3 )( 2x + 1 ) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)
e) ( 5x - 10 )( 8 - 2x ) = 0
<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy S = \(\left\{2;4\right\}\)
f) ( 9 - 3x )( 15 + 3x ) = 0
<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{3;-5\right\}\)
Học tốt nhaaa !
tìm x : I x + 3 I+ 10 - 5x = 0
`|x+3|+10-5x=0`
`<=>|x+3|=5x-10(x>=2)`
`+)x+3=5x-10`
`<=>4x=13`
`<=>x=13/4(tm)`
`+)x-3=10-5x`
`<=>6x=13`
`<=>x=13/6(tm)`
Vậy `S={13/4,13/6}`
\(\left|x+3\right|+10-5x=0\)
\(\Leftrightarrow\left|x+3\right|=5x-10\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-10\ge0\\\left[{}\begin{matrix}x+3=5x-10\\x+3=10-5x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=\dfrac{13}{4}\left(N\right)\\x=\dfrac{7}{6}\left(L\right)\end{matrix}\right.\end{matrix}\right.\)
Giải:
\(\left|x+3\right|+10-5x=0\)
\(\Rightarrow\left|x+3\right|=5x-10\)
\(\Rightarrow\left[{}\begin{matrix}5x-10=x+3\\5x-10=x-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{13}{4}\\x=\dfrac{7}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{13}{4};\dfrac{7}{4}\right\}\)
Chúc bạn học tốt!
tìm x : I x + 3 I+ 10 - 5x = 0
`|x+3|+10-5x=0`
`<=>|x+3|=5x-10(x>=2)`
`+)x+3=5x-10`
`<=>4x=13`
`<=>x=13/4(tm)`
`+)x-3=10-5x`
`<=>6x=13`
`<=>x=13/6(tm)`
Vậy `S={13/4,13/6}`
TH1: `x+3>=0 <=> x>=-3`
`x+3+10-5x=0`
`-4x=-13`
`x=13/4` (TM)
TH2: `x+3<0 <=> x<-3`
`-x-3+10-5x=0`
`-6x=-7`
`x=7/6` (L)
Vậy `x=13/4`