Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồng Nga
Xem chi tiết
Võ Đông Anh Tuấn
27 tháng 9 2016 lúc 9:04

a ) \(A=\left|x+1\right|+\left|x+2\right|-2x+3\ge2x+3-2x+3=6\)

Dấu " = " xảy ra khi \(\left(x+2\right)\left(x+1\right)\ge0\)

b ) 

\(B=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)

Dấu " = " xảy ra khi \(\left(2x+3\right)\left(1-2x\right)\ge0\)

c )

\(C=\left|x-1\right|+\left|x-2\right|+\left|x-2\right|\ge\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

Dấu " = " xảy ra khi \(x=2\)

  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 10 2019 lúc 18:23

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 
Trần Phạm Minh Anh
Xem chi tiết
nguyễn thảo hân
Xem chi tiết
hai do the
Xem chi tiết
Monkey D Luffy
Xem chi tiết
Dũng Senpai
31 tháng 8 2016 lúc 19:51

Ta có:Vế trai luôn dương.

=>Vế phải luôn dương.

2x-3>0=>x>1

Dễ thấy sau khi suy luận như trên:

|x-1|=x-1

|x+1|=x+1

=>x-1+x+1=2x-3

2x=2x-3

=>x thuộc rỗng.

Dũng Senpai
31 tháng 8 2016 lúc 19:52

Ta có:Vế trai luôn dương.

=>Vế phải luôn dương.

2x-3>0=>x>1

Dễ thấy sau khi suy luận như trên:

|x-1|=x-1

|x+1|=x+1

=>x-1+x+1=2x-3

2x=2x-3

=>x thuộc rỗng.

Dũng Senpai
31 tháng 8 2016 lúc 19:53

Ta có:Vế trai luôn dương.

=>Vế phải luôn dương.

2x-3>0=>x>1

Dễ thấy sau khi suy luận như trên:

|x-1|=x-1

|x+1|=x+1

=>x-1+x+1=2x-3

2x=2x-3

=>x thuộc rỗng.

BUI THI KIM LIEN
Xem chi tiết
zZz Phan Cả Phát zZz
19 tháng 1 2017 lúc 22:29

b) Theo bài ra , ta có : 

(2x - 5) - (3x - 7) = x + 3 

(=) 2x - 5 - 3x + 7 = x + 3 

(=) -2x = 1 

(=) x = -1/2 

Vậy x = -1/2 

Chúc bạn học tốt =))

ngọc long đinh
Xem chi tiết
blabla
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 21:38

a: \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)

=>\(\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

b: \(\left|2x+1\right|+\dfrac{3}{2}=2\)

=>\(\left|2x+1\right|=\dfrac{1}{2}\)

=>\(\left[{}\begin{matrix}2x+1=\dfrac{1}{2}\\2x+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

c: (2x-3)2=36

=>\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

d: \(7^{x+2}+2\cdot7^x=357\)

=>\(7^x\cdot49+7^x\cdot2=357\)

=>\(7^x=7\)

=>x=1

Toru
28 tháng 10 2023 lúc 21:45

a) \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

\(---\)

b) \(\left|2x+1\right| +\dfrac{2}{3}=2\)

\( \Rightarrow\left|2x+1\right|=2-\dfrac{2}{3}\)

\(\Rightarrow\left|2x+1\right|=\dfrac{4}{3}\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{4}{3}\\2x+1=-\dfrac{4}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}\\2x=-\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)

\(---\)

c) \(\left(2x-3\right)^2=36\)

\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

\(---\)

d) \(7^{x+2}+2\cdot7^x=357\)

\(\Rightarrow7^x\cdot7^2+2\cdot7^x=357\)

\(\Rightarrow7^x\cdot\left(7^2+2\right)=357\)

\(\Rightarrow7^x\cdot\left(49+2\right)=357\)

\(\Rightarrow7^x\cdot51=357\)

\(\Rightarrow7^x=357:51\)

\(\Rightarrow7^x=7\)

\(\Rightarrow x=1\)