cho tam giác DEF có DK là tia phân giác của góc D, DF=9cm, DE=27cm. tính tỉ số KE/KF. tính KE biết KF=6cm
cho tam giác DEF ( DE=DF) . Gọi M và N lần lượt là trung điểm của DE và DF.
a) Chúng minh EM=FN và góc DEM =góc DFN
b) EM cắt FN tại K .C/M KE = KF
C) C/m DK là tia phân giác của góc EDF và DK đi qua trung điểm H của EF
a. vì tam giác DEF cân => DE=DF=>1/2DE=1/2DF=>DM=DN
Xét 2 tam giác DEM và tam giác DFNcó
DE=DF(gt)
góc D chung
DM=DN (cmt)
=>tam giác DEM = tam giác DFN(c,g,c)
=> EM=FN(cạnh tương ứng)
b. Vì góc DEM=góc DFN (cmt)
góc DEF =góc DEF (suy từ giả thuyết)
=>DEF - DEM = DFE - DFN => KEF = KFE
=> tam giác KEF cân
=> KE=KF
c. xét 2 tam giác : tam giác DKE và tam giácDKF
DE=DF (gt)
DK chung
KE=KF (cmt)
tam giác DKE =tam giác DKF (c.c.c)
=> góc EDK = góc FDK
kéo dài DK và và két EF tại H'
xét 2 tam giác tam giác DH'Evà tam giác DH'F
DE=DF
EDH'=FDH'
DH' chung
=> tam giác DH'E= tam giác DH'F
=>H'E =H'F(c.t.ư)
=> H và H' trùng nhau
=>Dk đi qua H
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
Cho tam giác DEF có DE=DF, gọi M và N lần lượt là trung điểm của DE=DE.
a) CM: EN=FM, góc DEM= góc DFN
b) Gọi giao điểm của EM và FN là K. CM: KE=KF\
c) CM: DK là tia phaangiacs của góc EBF
Cho tam giác DEF có DE = DF. Lấy điểm K nằm trong tam giác sao cho KE = KF. Kẻ KP vuông góc với DE (P thuộc DE), KQ vuông góc với DF (Q thuộc DF). Chứng minh:
a) K thuộc đường trung trực của EF và PQ;
b) DK là đường trung trực của EF và PQ. Từ đó suy ra PQ//EF.
cho tam giác cân DEF(DE=DF). gọi M và N lần lượt là trung điểm của DE và DF.
a) chứng minh EM=FN và góc DEM= góc DFN
b) gọi giao điểm của EM và FN là K. chứng minh KE=KF
c) chứng minh DK là phân giác của góc EDF và DK kéo dài đi qua trung điểm H của EF
Cho tam giác DEF có 3 góc vuông.Vẽ đường cao DK.Biết DE=12cm,DK=6cm,KF=8cm.Từ K kẻ KH vuông góc với DF tại H,KI vuông góc DE tại I.
a)Tính DI,EI và số đo góc DFK
b)Chứng minh:DI.DE=DH.DF
c)Tính diện tích tam giác DIH
Cho tam giác DEF cân có DE = DF=5cm EF =8cm. Kẻ DK vuông góc với EF
a) C/m KE =KF và tính độ dài đoạn DK
b) Trên cạnh EF lấy hai điểm A và B sao cho AE=BF<KE
C/m tam giác DAB là tam giác cân
c) Từ A kẻ AM vuông góc với DE từ B kẻ BN vuông góc với DF. C/m góc EAM = góc FBN
d) Gọi H là giao điểm của AM và BN. C/m ba điểm
D, K, H thẳng hàng
Nhanh nhé, mình đang cần gấp
a, Ta có: DK là đường cao trong tam giác cân DEF
⇒DK vừa là đường cao, vừa là đường trung tuyến trong tam giác cân
⇒KE=KF
Ta có: KE=KF=EF/2=8/2=4 (cm)
Xét Δ vuông DKF
Theo định lý Pi-ta-go, ta có:
DF²=DK²+KF²
⇒DK²=DF²-KF²
⇒DK²=5²-4²
⇒DK²=9
tam giác DEF cân tại D có DE=DF=5cm, EF=6cm. Tia phân giác của góc E cắt DF tại M, phân giác của góc F cắt DE tại N. Tính DM. Tính tỉ số diện tích của ∆DMN và ∆DEF
a) Xét ΔDEF có
EM là đường phân giác ứng với cạnh DF(gt)
nên \(\dfrac{DM}{DE}=\dfrac{MF}{EF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DM}{5}=\dfrac{MF}{6}\)
mà DM+MF=DF(M nằm giữa D và F)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DM}{5}=\dfrac{MF}{6}=\dfrac{DM+MF}{5+6}=\dfrac{DF}{11}=\dfrac{5}{11}\)
Do đó:
\(\dfrac{DM}{5}=\dfrac{5}{11}\)
hay \(DM=\dfrac{25}{11}cm\)
Vậy: \(DM=\dfrac{25}{11}cm\)
Cho ∆Def vuong tại D có DE = 3cm , EF vẽ đường cao AH d k đường phân giác cy k thuộc EF được k vẽ kh vuông góc với df a tính độ dài EF chứng minh rằng tam giác DEF đồng dạng với tam giác HKF và DE.HF = DF.HK c, tính độ dài DK , KF ,KH
Đường cao AH hay DK vậy bạn?