Thu gọn A=2n-1+2.2n+3-8.2n-4-16.2n
a . 2n=2560
3n=729
4n =256
2.2n=256
tìm n biết
* \(2n=2560\Leftrightarrow n=\dfrac{2560}{2}=1280\) vậy \(n=1280\)
* \(3n=729\Leftrightarrow n=\dfrac{729}{3}=243\) vậy \(n=243\)
* \(4n=256\Leftrightarrow n=\dfrac{256}{4}=64\) vậy \(n=64\)
* \(2.2n=256\Leftrightarrow n=\dfrac{256}{2.2}=\dfrac{256}{4}=64\) vậy \(n=64\)
\(2n=2560\Rightarrow n=1280\)
\(3n=729\Rightarrow n=243\)
\(4n=256\Rightarrow n=64\)
\(2.2n=256\Rightarrow n=64\)
BT6: Thu gọn, chỉ ra phần hệ số và tìm bậc của các đơn thức sau:
a, A=3/4x^n-1.4/5x^2n+1y^2n+1.5/6xy^n+1
b, B=6/4x^3-n.4/2x^4-ny^5-n.2/6y^6-n
c, C= -4/3x^2-ny.6/7x^2n-3y^n-1.-1/2xy
d, D=1/5xy^n+1.4/3x^n+1y.15/7x^ny^n
a: \(=\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot x^{n-1+2n+1+1}\cdot y^{2n+1+n+1}=\dfrac{1}{2}x^{3n+1}y^{3n+2}\)
Hệ số: 1/2
Bậc: 6n+3
b: \(=\dfrac{6}{5}\cdot\dfrac{4}{2}\cdot\dfrac{2}{6}\cdot x^{3-n+4-n}\cdot y^{5-n+6-n}=\dfrac{4}{5}x^{7-2n}y^{11-2n}\)
Hệ số: 4/5
bậc: 18-4n
c: \(=\dfrac{4}{7}x^{2-n+2n-3+1}y^{1+n-1+1}=\dfrac{4}{7}x^{n-1}y^{n+1}\)
Hệ số: 4/7
Bậc: 2n
d: =4/7x^(2n+2)*y^(2n+2)
Hệ số: 4/7
Bậc: 4n+4
1)so sánh 2 luỹ thừa
a) 31^11 và 17^14
b)333^444 và 444^333
2) thu gọn các tổng sau
a) A= 2+2^2+2^3+2^4+...+2^99+2^100
b) B= 1+3+3^2+3^3+3^4+...+3^100+3^101
3) cho B= 1+3+5+7+9+...+(2n-1) với n thuộc N*
a) thu gọn B
b) hỏi B có là số chính phương không? vì sao ?
Thu gọn tổng:
E = -1 + a - a2 + ... - a2n + a2n+1
Thu gọn biểu thức : 4 .102n + 4 . 10n + 1
Ta có :
4 . 102n + 4 . 10n + 1
= 4 . 10n . 102 + 4 . 10n + 1
= 10n . (4 . 100 + 4) + 1
= 10n . 404 + 1
Ủng hộ mk nha !!! ^_^
Ta có :
4 . 102n + 4 . 10n + 1
= 4 . 10n . 102 + 4 . 10n + 1
= 10n . (4 . 100 + 4) + 1
= 10n . 404 + 1
a) Tìm a, b : \(14a+6b=84+ab\)
b) Rút gọn \(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2n-1}{4+\left(2n-1\right)^4}\)
câu a: 14a + 6b = 84 + ab
<=> 14a + 6b - 84 - ab =0
<=> (14a -84) + (6b -ab)=0
<=> 14( a- 6) - b(a-6)=0
<=> (a - 6)(14-b) = 0
Vậy a=6, b=14
Đặt \(A=\dfrac{n}{4+n^4}\)
\(=\dfrac{n}{n^4+4n^2+4-4n^2}\)
\(=\dfrac{n}{\left(n^2+2\right)^2-\left(2n\right)^2}\)
\(=\dfrac{n}{\left(n^2+2-2n\right)\left(n^2+2+2n\right)}\)
\(\Rightarrow4A=\dfrac{4n}{\left(n^2-2n+2\right)\left(n^2+2n+2\right)}\)
\(=\dfrac{1}{n^2-2n+2}-\dfrac{1}{n^2+2n+2}\)
Đặt \(P=\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2n-1}{4+\left(2n-1\right)^4}\)
\(\Rightarrow4P=\dfrac{4}{4+1^4}+\dfrac{12}{4+3^4}+...+\dfrac{4\left(2n-1\right)}{4+\left(2n-1\right)^4}\)
\(=\dfrac{1}{1^2-2\times1+2}-\dfrac{1}{1^2+2\times1+2}\)
\(+\dfrac{1}{3^2-2\times3+2}-\dfrac{1}{3^2+2\times3+2}+...+\)
\(\dfrac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\dfrac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{17}+...+\)
\(\dfrac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\dfrac{1}{4n^2-4n+1+4n-2+2}\)
\(=1-\dfrac{1}{4n^2+1}\)
\(\Rightarrow P=\dfrac{1}{4}-\dfrac{1}{4\left(4n^2+1\right)}\)
Thu gọn các biểu thức sau:
a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)
\(=2^{n-1}+2^{n+4}-2^{n-1}-2^{n+4}\)
\(=0\)
b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}-2^{n+1}\right)-3^{2n+2}+2^{2n+2}\)
\(=3^{2n+2}-2^{2n+2}-3^{2n+2}+2^{2n+2}\)
\(=0\)
Rút gọn:
\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+\left(2n-1\right)^4}\)
mẫu các phân số này có dạng a4 + 4 = a4 + 4a2 + 4 - 4a2 = (a2 - 2a + 2)(a2 + 2a + 2)
do đó các phân số sẽ biến đổi như sau:
\(\frac{a}{4+a^4}=\frac{a}{\left(a^2-2a+2\right)\left(a^2+2a+2\right)}=\frac{1}{4}\frac{4a}{\left(a^2-2a+2\right)\left(a^2+2a+2\right)}\)
\(=\frac{1}{4}\left(\frac{1}{a^2-2a+2}-\frac{1}{a^2+2a+2}\right)\)
do đó biểu thức M = \(\frac{1}{4}\left(\frac{1}{1}-\frac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\frac{n^2}{4n^2+1}\)
Rút gọn:
\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2n-1}{4+\left(2n-1\right)^4}\)
Mẫu của các phân số có dạng : \(a^4+4=a^4+4a^2+4-4a^2=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2-2a\right)\left(a^2+2+2a\right)\)
Do đó các phân số biến dổi như sau:
\(\dfrac{a}{a^4+4}=\dfrac{a}{\left(a^2+2-2a\right)\left(a^2+2+2a\right)}=\dfrac{1}{4}.\dfrac{4a}{\left(a^2+2-2a\right)\left(a^2+2+2a\right)}\)
Đặt biểu thức trên là M nhé!!!
Vậy M=\(M=\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\dfrac{n^2}{4n^2+1}\)
Bài này của lớp 9 á nha bạn!!! Em mới học lớp 6 à năm nay lên 7. Do thầy dạy trước nên có gì sai sót thì bỏ qua nhé!!!
Thu gọn các biểu thức sau:
a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
HELP!!!!
a,
\(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)
\(=2.2^{n-1}+2.2^{n+4}=2^n+2^{n+5}\)
b,
\(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
\(=\left(3^{n+1}\right)^2-\left(2.2^n\right)^2-\left(3^{n+1}\right)^2+\left(2^{n-2+3}\right)^2\)
\(=-2^{n+1}+2^{n+1}=0\)