\(Cho\)\(P\left(x\right)=x^5-14x^4+85x^3-224x^2+274x^2-110\)
\(\text{a) Lập quy trình bấm phím tính giá trị của biểu thức tại x=a}\)
\(\text{b) Tính P tại x=5.9;20.11;22.12;14.2;27.2;26.3;30.4}\)
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
Cho biểu thức A = \(\dfrac{3}{\text{x}+1}\)
Tính giá trị của biểu thức A tại \(\left|\text{x}\right|\) = 2
\(ĐK:x\ne-1\\ \left|x\right|=2\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Với \(x=2\Leftrightarrow A=\dfrac{3}{2+1}=1\)
Với \(x=-2\Leftrightarrow A=\dfrac{3}{-2+1}=-3\)
Cho biểu thức A = \(\dfrac{3}{\text{x}+1}\)
Tính giá trị của biểu thức A tại \(\left|\text{x}\right|\) = 2
\(\Leftrightarrow\left[{}\begin{matrix}A=\dfrac{3}{2+1}=\dfrac{3}{3}=1\\A=\dfrac{3}{-2+1}=\dfrac{3}{-1}=-3\end{matrix}\right.\)
1.Với giá trị nào của biến thì giá trị của biểu thức bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
2.Tính giá trị của các biểu thức sau:
\(A=\frac{a^2\left(a^2+b^2\right)\left(a^{\text{4}}+b^{\text{4 }}\right)\left(a^8+b^8\right)\left(a^2-3b\right)}{\left(a^{10}+b^{10}\right)}\)tại a=6;b=12
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)tại x+y=0
\(C=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)tại x+y=0
Câu 1:Cho biểu thức P=\(\text{}\text{}\text{}\text{}\left(\dfrac{x}{4-x^2}+\dfrac{2}{x-2}-\dfrac{1}{x+2}\right):\left(1-\dfrac{x+1}{x+2}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị của P khi cho \(\left|x\right|\)=1
c)Tìm x để P >0
d)Tìm x để P = \(\dfrac{1}{x+1}\)
Câu 2:Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền của tam giác thành hai đoạn có độ dài như sau: HB = 25cm, Hc = 36cm. Vậy đường cao AH có độ dài là
1.Tính giá trị của biểu thức \(M=\frac{2x^2+3x-2}{x+2}\)tại \(x=-1;\text{|}x\text{|}=3\)
2. Cho đa thức \(P=2x.\left(x+y-1\right)+y^2+1\)
a, Tính giá trị P với x = -5 ; y = 3 . Chứng mính rằng P luôn luôn nhận giá trị không âm với mọi x , y
trình bày cách làm nữa nha
Cho biểu thức \(P=\left(\dfrac{x}{x-2}-\dfrac{3+x}{x+2}\right):\dfrac{x+6}{x^2-4x+4}\)a) Tìm điều kiện xác định của biểu thức Pb) Rút gọn biểu thức Pc) Tính giá trị của biểu thức P tại x = -4 và tại x = 2
1. Cho biểu thức \(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
a) Tính giá trị của A tại \(x=\frac{1}{4}\)
b) Tính giá trị của x để A = -1
c) Tính giá trị nguyên của x để A nhận giá trị nguyên.
2. a) Tìm x biết: \(\sqrt{7-x}=x-1\)
b) Tính tổng \(M=1+\left(-2\right)+\left(-2\right)^2+...+\left(-2\right)^{2006}\)
c) Cho đa thức: \(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
Chứng tỏ rằng đa thức trên không có nghiệm.
lop 7 lam gi co nghiem voi da thuc ha ban
BT6: Tính giá trị của biểu thức
\(1,A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)tại \(x=-5\)
\(2,B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)tại \(x=10,y=-1\)
1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(A=5x^3-15x+7x^2-5x^3-7x^2\)
\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)
\(A=-15x\)
Thay \(x=-5\) vào A ta được:
\(-15\cdot-5=75\)
Vậy: ....
2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(B=x^3-3x+7x^2-5x^3-7x^2\)
\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)
\(B=-4x^3-3x\)
Thay \(x=10,y=-1\) vào B ta được:
\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)
Vậy: ....