Tìm số nguyên x để biểu thức sau nhận giá trị nguyên:
P= x^2 - 3x - 11/ x-2
Bài1: Cho biểu thức:
A= x^3 - 3x^2 + 4x - 1 / x-3
a) Tìm điều kiện xác định
b) Tìm giá trị nguyên của x để biểu thức có giá trị nguyên.
Bài 2:Cho biểu thức:
P= x^3 - 3x^2 + 6 / x^2 - 3x
a) Tìm điều kiện xác định
b) Tính giá trị của P khi x = 2
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
cảm ơn bạn nha nhưng bạn có chắc là nó đúng ko
Tìm các giá trị nguyên x để biểu thức A= 3x+1/x+2 nhận giá trị nguyên
`A=[3x+1]/[x+2]=[3x+6-5]/[x+2]=3-5/[x+2]`
Để `A` nhận giá trị nguyên thì `3-5/[x+2] in ZZ`
`=>x+2 in Ư_5`
Mà `Ư_5 ={+-1;+-5}`
`@x+2=1=>x=-1`
`@x+2=-1=>x=-3`
`@x+2=5=>x=3`
`@x+2=-5=>x=-7`
Tìm giá trị nguyên của x để biểu thức sau nhận giá trị nguyên
\(\frac{3x^2+6x+5}{x+1}\)
ta có \(\frac{3x^2+6x+5}{x+1}=\frac{3\left(x+1\right)^2+2}{x+1}=3\left(x+1\right)+\frac{2}{x+1}\)
do x nguyên nên 3(x+1) là số nguyên
do đó \(\frac{2}{x+1}\) phải là số nguyên hay x+1 là ước của 2
\(\Rightarrow\orbr{\begin{cases}x+1=\pm1\\x+1=\pm2\end{cases}\Rightarrow x\in\left\{-3,-2,0,1\right\}}\)
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
Không biết mẫu số và x như thế nào? Bạn xem lại
Tìm x nguyên dương để biểu thức 3 x − 2 nhận giá trị nguyên
Cho biểu thức: A = (x/x^2-4-4/2-x+1/x+2):3x+3/x^2+2x
a) Tìm điều kiện xác định của A và rút gọn biểu thức A;
b) Tính giá trị của biểu thức A khi |2x-3|-x+1=0
c) Tìm giá trị nguyên của x để A nhận giá trị nguyên.
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
Tách phần nguyên của biểu thức sau, rồi tìm giá trị nguyên của x để giá trị của biểu thức cũng là 1 số nguyên:
\(\dfrac{4x^3-3x^2+2x-83}{x-3}\)
tìm số nguyên x để biểu thức sau nhận giá trị nguyên
A=(7x+2)/x-1
\(A=\frac{7x+2}{x-1}=\frac{7x-7+9}{x-1}=\frac{7\left(x-1\right)+9}{x-1}=\frac{7\left(x-1\right)}{x-1}+\frac{9}{x-1}=7+\frac{9}{x-1}\)
Để A nguyên thì \(\frac{9}{x-1}\) là số nguyên
<=>9 chia hết cho x-1
<=>x-1\(\inƯ\left(9\right)\)
<=>x-1\(\in\left\{-9;-3;-1;1;3;9\right\}\)
<=>\(x\in\left\{-8;-2;0;2;4;10\right\}\)
Vậy với x\(\in\left\{-8;-2;0;2;4;10\right\}\) thì A nhận giá trị nguyên