Chung minh rang x2+5xy+2x-4xy-10y+14 >0 voi moi x,y
BAI 1;CMR cac bat dang thuc sau thoa man voi moi x,y
a, x2 + 5y2 + 2x - 4xy - 10y + 14 > 0
b, 5x2 + 10y2 - 6xy - 4x - 2y + 3 > 0
cho a=x 3y, b=x 2y 2, c=xy 3 .Chung minh rang voi moi so huu ti x va y ta luon duoc ax+b 2-2x 4y 4=0
Chứng minh rằng:
x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.
Chứng minh:
x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.
Đặt \(A=x^2+5y^2+2x-4xy-10y+14\)
\(A=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(A=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)
\(\Rightarrow A>0\left(đpcm\right)\)
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có:
\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)
không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .
chung minh rang : x2 + y2 _ 4x+2y+7>0 voi moi so thuc x,y
Ta có x2+y2-4x+2y + 7
= ( x2 -4x+2) + ( y2+2y+1)+4
= ( x-2)2 +( y+1)2 +4
Ta có ( x-2)2 >=0 và ( y+1)2 >=0
<=> ( x-2)2 +( y+1)2 +4>=4
vậy x2+y2-4x+2y + 7>=0
chứng minh rằng các hằng đẳng thức sau thỏa mãn với mọi x, y :
a, x^2 + xy + y^2 + 1 > 0
b, x^2 + 5y^2 + 2x - 4xy -10y+ 14 >0
c, 5x^2+10y^2 - 6xy -4x -2y +3 >0
Chứng minh rằng:
x^2+5y^2+2x-4xy-10y+14>0