Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Thị Minh Nguyệt
Xem chi tiết
Đoàn Hoài Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 13:38

g: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)

h: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2021}{2022}=\dfrac{1}{2022}\)

Vũ Trọng Hiếu
5 tháng 2 2022 lúc 13:55

bn tham khảo nha

(1-1/2)×(1-1/3)×(1-1/4)×....×(1-1/100)

=(2/2-1/2)x(3/3-1/3)x...x(100/100-1/100)

=1/2x2/3x...x99/100

=1/100

Dinz
Xem chi tiết
Akai Haruma
11 tháng 8 2021 lúc 17:41

Lời giải:
Đặt $2021=a$ thì:
$A=a^2+(a+1)^2+(a+2)^2+(a+3)^2$
$=4a^2+12a+14=(2a+3)^2+5=4045^2+5$ chia hết cho $25$ nhưng không chia hết cho $5$

Do đó $A$ không là số chính phương 

-----------------------

$9\equiv 1\pmod 4\Rightarrow 9^{100}\equiv 1\pmod 4$

$94^{100}\equiv 0\pmod 4$

$1994^{100}\equiv 0\pmod 4$

$\Rightarrow B\equiv 1+1+0+1\equiv 2\pmod 4$

Một scp không thể chia 4 dư 2 nên $B$ không là scp

---------------

Công thức $1^3+2^3+...+n^3=[\frac{n(n+1)}{2}]^2$ là scp nên $C$ là scp.

 

 

Lê Nguyễn Quỳnh Anh
Xem chi tiết
Hoàng Quế Chi
12 tháng 1 2023 lúc 22:25

A = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100

2A = 1 + 1/2 + 1/2^2 + ... + 1/2^99
2A - A = (1 + 1/2 + 1/2^2 + ... + 1/2^99) - (1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100)

A = 1 - 1/2^100

B = 1 + 1/3 + 1/3^3 + ... + 1/3^2022

3B = 3 + 1 + 1/3 + ... + 1/3^2021

3B - B = (3 + 1 + 1/3 + ... + 1/3^2021) - (1 + 1/3 + 1/3^3 + ... + 1/3^2022)

2B = 3 - 1/3^2022

B = \(\dfrac{\text{3 - 1/3^2022}}{\text{2}}\)

   A        =      \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) +...............+ \(\dfrac{1}{2^{100}}\)

2.A       = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) +\(\dfrac{1}{2^3}\).........+\(\dfrac{1}{2^{99}}\)

2A -A   =  1 - \(\dfrac{1}{2^{100}}\)

       A  =   1 - \(\dfrac{1}{2^{100}}\)

B          =    1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^3}\) + ....+ \(\dfrac{1}{3^{2022}}\) 

Xem lại đề bài 

do thanh dat
Xem chi tiết
Lê Quốc Bình
Xem chi tiết

A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)

Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)

ta có dãy số: 1; 2; ....;100

Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)

Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:

A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)

A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)

A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)

A = 1

Hiếu
Xem chi tiết
soyeon_Tiểu bàng giải
28 tháng 7 2016 lúc 17:34

100 - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)

= (1 + 1 + 1 + 1 + ... + 1) - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)

             100 số 1                            100 phân số

= (1 - 1) + (1 - 1/2) + (1 - 1/3) + (1 - 1/4) + ... + (1 - 1/100)

= 1/2 + 2/3 + 3/4 + ... + 99/100 ( đpcm)

Sarah
29 tháng 7 2016 lúc 18:15

100 - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)

= (1 + 1 + 1 + 1 + ... + 1) - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)

             100 số 1                            100 phân số

= (1 - 1) + (1 - 1/2) + (1 - 1/3) + (1 - 1/4) + ... + (1 - 1/100)

= 1/2 + 2/3 + 3/4 + ... + 99/100 ( đpcm)

Trần Hải Long
Xem chi tiết
Vũ Phan Tuấn Dũng
Xem chi tiết
OnIine Math
7 tháng 8 2018 lúc 8:47

Ta chia thành hai vế (1) và (2)

Số số hạng (1) là :

( 101 - 1 ) : 1 + 1 = 101  ( số )

Tổng (1) là :

( 101 + 1 ) x 101 : 2 = 5151

Tự tính tiếp

Đoàn Đức Hà
27 tháng 5 2021 lúc 10:48

\(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99+100\right)\)

\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+...+3\right)+...+\left(99+99\right)+100\)

\(=1.100+2.99+3.98+...+99.2+100.1\)

Do đó kết quả của phép tính cần tìm là: 

\(\frac{1.100+2.99+...+99.2+100.1}{\left(1.100+2.99+...+99.2+100.1\right).2013}=\frac{1}{2013}\)

Khách vãng lai đã xóa