Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
châu văn kim cương
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 23:15

\(\sqrt{ab}\le\dfrac{a+b}{2}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

An Trần
Xem chi tiết
Khánh Chi Trần
Xem chi tiết
Nguyễn Khánh Châu
22 tháng 3 2022 lúc 16:30

Bạn tự vẽ hình nhé!

a, Xét \(\Delta ABC.và.\Delta ABH.có:\)

\(\widehat{BAC}=\widehat{BHA}\) 

\(\widehat{B}.chung\)

\(\Rightarrow\Delta ABC\sim\Delta ABH\)

b, Áp dụng định lý Pytago vào tam giác vuông ABC, ta có:

\(BC^2=AB^2+AC^2\)

\(BC^2=4^2+5^2=41\\ \Rightarrow BC=\sqrt{41}\approx6,4\left(cm\right)\)

Vì \(\Delta ABC\sim\Delta ABH\) và \(\Delta ABC\) có đường cao AH:

\(\Rightarrow\dfrac{BH}{BA}=\dfrac{HC}{AC}\) ( 1 )

Dựa vào tính chất dãy tỉ số bằng nhau, ta lại có:

\(\left(1\right)\Rightarrow\dfrac{BH}{BA}=\dfrac{HC}{AC}=\dfrac{BH+HC}{BA+AC}=\dfrac{BC}{4+5}=\dfrac{6,4}{9}\)

\(\Rightarrow BH=\dfrac{4.6,4}{9}=2,8\left(cm\right)\)

Trương Thị Thìn
Xem chi tiết
hết tên để đặt
29 tháng 10 2015 lúc 21:07

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

Trần Vương Quân
25 tháng 12 2016 lúc 15:12

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

Trần Vương Quân
25 tháng 12 2016 lúc 15:20

Ở trên nhầm: AH2=ab\(\Rightarrow AH=\sqrt{ab}\)

Kết hợp (1), (2) và (3) \(\Rightarrow\sqrt{ab}\le\frac{a+b}{2}\)

Bạn chăm hoc
Xem chi tiết
Ahwi
15 tháng 6 2019 lúc 21:37

A B C I E H M

Số tự thêm ha

a/ Xét tam giác ABC, áp dụng Định lí Pitago đảo:

\(AB^2+AC^2\)

\(=9^2+12^2=225=15^2=BC^2\)

=> Tam giác ABC vuông

b/ Xét tam giác ABCvuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)(định lí 4)

\(\frac{1}{AH^2}=\frac{1}{9^2}+\frac{1}{12^2}=\frac{25}{1296}\)

\(\Rightarrow AH^2=\frac{1296}{25}\Rightarrow AH=7,2\)(cm)

Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AB^2=BH\cdot BC\)(đinh lí 1)

\(9^2=BH\cdot15\)

\(\Rightarrow BH=5,4\)(cm)

c/ Xét tam giác ABH vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=AE\cdot AB\)(định lí 1) [1]

Xét tam giác AHC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=AI\cdot IC\)(đinh lí 1) [2]

Từ [1], [2] \(\Rightarrow AE\cdot AB=AI\cdot AC\)(đpcm)

d/ Gọi M là đường trung tuyến tam giác ABC

\(\Rightarrow BM=MC=\frac{BC}{2}=AM\)

Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=BH\cdot HC\)(định lí 2)

\(\Rightarrow\sqrt{BH\cdot HC}=\sqrt{AH^2}=AH\)

Mà \(AH\le AM\)(  AH = AM với trường hợp AH trùng AM )

\(\Rightarrow\sqrt{HB\cdot HC}\le\frac{BC}{2}\)(đpcm)

p/s Hình hơi xấu nhé, thông cảm >:

Bạn chăm hoc
16 tháng 6 2019 lúc 16:38

Ahwi:

Bài d nếu thay số vào thì có được không bạn? do mik thấy các cạnh trên đều tìm được??

Bạn chăm hoc
16 tháng 6 2019 lúc 16:44

Giải thích rõ luôn , mik ngu hình lắm 

Ag.Tzin^^
Xem chi tiết
Nguyễn Ý Nhi
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Ngọc Anh
Xem chi tiết
My Tran
22 tháng 7 2018 lúc 13:36

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

Không Tên
22 tháng 7 2018 lúc 20:37

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)