Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Chí Hiếu
Xem chi tiết
Nguyệt hà
Xem chi tiết
phan thi huyền trang
19 tháng 1 2016 lúc 13:16

.>

>            tic nhe cac ban

Nguyen Tu Linh
Xem chi tiết
doantrancaotri
Xem chi tiết
Hạnh Nguyên
3 tháng 11 2016 lúc 16:22

ta có \(\frac{1}{\sqrt{x}}\)\(\frac{2}{2\sqrt{x}}\)\(\frac{2}{\sqrt{x}+\sqrt{x-1}}\)= 2(\(\sqrt{x}-\sqrt{x-1}\))

Áp dụng vào A \(\Rightarrow\)A < 1 + 2(\(\sqrt{2}-\sqrt{1}\)) + 2(\(\sqrt{3}-\sqrt{2}\)) + ... + 2(\(\sqrt{100}-\sqrt{99}\)) = 1 - 2 + \(2\sqrt{100}\)\(2\sqrt{100}-1\)\(2\sqrt{101}-1=B\)

\(\Rightarrow\)A < B

Nguyen Thi Yen Anh
Xem chi tiết
Kaori Miyazono
24 tháng 8 2018 lúc 18:09

Ta có \(A=1+2^2+2^3+....+2^{99}+2^{100}\)

\(2A=2+2^3+2^4+2^5+...+2^{100}+2^{101}\)

Suy ra \(2A-A=2^{101}-1=B\)

Do đó A =B

Vậy A =B 

Shion Fujino
24 tháng 8 2018 lúc 20:09

A = 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 

2A = 2 + 2^3 + 2^4 + ... + 2^100 + 2^101 

2A - A = ( 2 + 2^3 + 2^4 + ... + 2^100 + 2^101 ) - ( 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 ) 

A = 2^101 - 1 

Vì A = 2^101 - 1 và B = 2^101 - 1 

=> A = B 

Vậy A=B

Duong Duy Lam
16 tháng 9 2018 lúc 10:48

A=1+2^2+2^3+...+2^99+2^100

2A=2+2^3+2^4+...+2^100+2^101

2A-A=(2+2^3+2^4+...+2^100+2^101)-(1+2^2+2^3+...+2^99+2^100)

A=2^101-[2-(1+2^2)]

A=2^101-3

Vậy A=2^101-3 và B=2^101-1

=> A<B

Tuệ Lâm Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 20:35

2:

a: A=1+2+2^2+2^3+2^4

=>2A=2+2^2+2^3+2^4+2^5

=>A=2^5-1

=>A=B

b: C=3+3^2+...+3^100

=>3C=3^2+3^3+...+3^101

=>2C=3^101-3

=>\(C=\dfrac{3^{101}-3}{2}\)

=>C=D

IamnotThanhTrung
21 tháng 8 2023 lúc 20:43

Ta có: 

\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)

\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)

boi đz
21 tháng 8 2023 lúc 20:52

 \(a.5^{27}=\left(5^3\right)^9=125^9\\ 2^{63}=\left(2^7\right)^9=128^9\)

Vì 1289 > 125=> 263 > 527

\(5^{28}=\left(5^4\right)^7=625^7\\ 2^{63}=\left(2^9\right)^7=512^7\)

Vì 6257 > 5127 = > 528 > 263

Đã CMR: \(5^{27}< 2^{63}< 5^{28}\)

\(b.A=1+2+2^2+2^3+2^4\\ 2A=2+2^2+2^3+2^4+2^5\\ 2A-A=\left(2+2^2+2^3+2^4+2^5\right)-\left(1+2+2^2+2^3+2^4+\right)\\ A=2^5-1\\ 2^5-1=2^5-1=>A=B\\ c,C=3+3^2+....+3^{100}\\ 3C=3^2+......+3^{101}\\ 3C-C=\left(3^2+...+3^{101}\right)-\left(3+...+3^{100}\right)\\ 2C=3^{101}-3\\ C=\dfrac{3^{101}-3}{2}\\ \dfrac{3^{101}-3}{2}=\dfrac{3^{101}-3}{2}=>C=D\)

LụcYênNhi
Xem chi tiết
Nguyễn Huy Hải
1 tháng 12 2015 lúc 23:32

papa ko làm thì thui z 2`

a) Đặt A = 1 + 2 + 22 + 23 ...+299 + 2100

2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101

2A - A = 2 + 22 + 23 + 24 + ... + 2100 + 2101 - 1 + 2 + 22 + 23 ...+299 + 2100

A = 21001 - 1 < 2101

Vậy A < 2101

câu b tính trong ngoặc sau đó tính x như thường

Nguyễn Thị Bảo Ngọc
1 tháng 12 2015 lúc 23:36

bài này dễ mà. tớ nhắm mắt đọc cũng được

Tùng Nguyễn Khánh
Xem chi tiết
Nguyễn Tuấn Minh
19 tháng 8 2016 lúc 19:30

A=1+21+22+23+...+2100

2A=2+22+23+24+...+2101

2A-A=2101-1

A=2101-1

Ta có 2101>2101-1 nên B>A

Đàm Thị Minh Hương
19 tháng 8 2016 lúc 19:30

2A=2+2^2+2^3+2^4+....+2^101

=> 2A-A=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+...+2^100)

<=> A=2^101-1 > B=2^101

Phạm Ngô Phương Dung
19 tháng 8 2016 lúc 19:32

2A=2+2^2+...+2^101

=>2A-A=(2+2^2+...+2^101)-(1+2+2^2+...+2^100)

=> A=2^101-1<2^101=B

vậy a<b

Nguyễn ngọc Khế Xanh
Xem chi tiết
OH-YEAH^^
4 tháng 10 2021 lúc 20:15

\(A=1+2+2^2+...+2^{101}\)

\(2A=2+2^2+...+2^{102}\)

\(2A=\left(2+2^2+...+2^{102}\right)-\left(1+2+2^2+...+2^{101}\right)\)

\(A=2^{102}-1\)

\(B=5.2^{100}>2^{102}\)

Mà \(2^{102}>2^{102}-1\)

Nên B>A