Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hải Nguyễn
Xem chi tiết
Đinh Cao Sơn
Xem chi tiết

Ta có:\(x^2-4xy+6y^2+2x+4\)

\(=\left(x-2y\right)^2+\left(x+x+\frac{8}{x^2}\right)+\left(2y^2+\frac{2}{y^2}\right)\)

\(\ge0+6+4=10\)

\(\Rightarrow x^2-4xy+6y^2+2x\ge10-4=6\)

Dấu bằng xảy ra khi x=2 và y=1.

Ha Viet Dung
Xem chi tiết
Nguyễn Ngọc Bảo
23 tháng 8 2020 lúc 21:31

?????

Khách vãng lai đã xóa
đề bài khó wá
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2021 lúc 17:31

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)

Huỳnh Thị Thanh Hằng
Xem chi tiết
Minh MPT
Xem chi tiết
Nguyễn Hạ Vi
Xem chi tiết
Trịnh Xuân Diện
Xem chi tiết
Nguyễn Thế Tường
Xem chi tiết