Cho x,y > 0 và \(\frac{1}{x^2}+\frac{1}{y^2}=2\)
Chứng minh rằng \(x^2-4xy+6y^2+2x\ge6\)
CMR: f(x,y)=\(x^2+5y^2-4xy+2x-6y+3>0\)
4x^2 + 2y^2 + 2z^2 - 4xy - 4xz +2yz -6y -10z + 34 = 0
tính M= (x - 4)^22 + (y-4)^6 + (z-4)^2013
\(\left\{{}\begin{matrix}4xy+x+4\sqrt{\left(2-x\right)\left(2+y\right)}=14\\x^2+y^2+2x-1=0\end{matrix}\right.\)
\(\hept{\begin{cases}\sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\x^2+2x\left(y-1\right)+y^2-6y+1=0\end{cases}}\)
Tìm số nguyên x y thỏa mãn x^2+3y^2+4xy=2x+6y+24
\(\left\{{}\begin{matrix}\left(x+1\right)^2-y^2+6y-9=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
1/ cho \(^{5x^2+y^2+4xy+4x+4y-1=0}\)
tìm giá trị lớn nhất của S=2x+y-2 và giá trị x,y
2/cho \(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
tìm giá trị lớn nhất của S=x+y+1 và giá trị x,y
3/ cho \(3x^2+y^2+2xy+4=7x+3y\)
tìm giá trị lớn nhất của S=x+y+1