Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trần Ngọc Hân
Xem chi tiết
Khánh Vân
Xem chi tiết
T.Thùy Ninh
25 tháng 7 2017 lúc 10:17

1,\(f\left(x\right)=3x^2-2x-7\)

\(=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{22}{3}\)

\(=2\left(x-\dfrac{1}{3}\right)^2-\dfrac{22}{3}\ge-\dfrac{22}{3}\forall x\)

Vậy GTNN của biểu thức là \(-\dfrac{22}{3}\) khi \(x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)

\(b,f\left(x\right)=5x^2+7x=5\left(x^2+\dfrac{7}{5}x+\dfrac{49}{100}\right)-\dfrac{49}{20}\)\(=5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\ge-\dfrac{49}{20}\forall x\)

Vậy Giá trị nhỏ nhất của biểu thức là \(-\dfrac{49}{20}\) khi \(x+\dfrac{7}{10}=0\Rightarrow x=-\dfrac{7}{10}\)

\(c,f\left(x\right)=-5x^2+9x-2=-5\left(x^2-\dfrac{9}{5}x+\dfrac{81}{100}\right)+\dfrac{41}{20}\)\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\le\dfrac{41}{20}\forall x\)

Vậy GTLN của biểu thức là \(\dfrac{41}{20}\) khi \(x-\dfrac{9}{10}=0\Rightarrow x=\dfrac{9}{10}\)

\(d,f\left(x\right)=-7x^2+3x=-7\left(x^2-\dfrac{3}{7}x+\dfrac{9}{196}\right)+\dfrac{9}{28}\)\(=-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\le\dfrac{9}{28}\forall x\)

Vậy GTLN của biểu thức là \(\dfrac{9}{28}\) khi \(x-\dfrac{3}{14}=0\Rightarrow x=\dfrac{3}{14}\)

Huy Thắng Nguyễn
25 tháng 7 2017 lúc 10:27

1/ \(f\left(x\right)=3x^2-2x-7\)

\(=3\left(x^2-\dfrac{2}{3}x-7\right)\)

\(=3\left(x^2-\dfrac{2}{3}+\dfrac{1}{9}-\dfrac{64}{9}\right)\)

\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{64}{3}\)

Ta có: \(3\left(x-\dfrac{1}{3}\right)^2\ge0\forall x\Rightarrow3\left(x-\dfrac{1}{3}\right)^2-\dfrac{64}{3}\ge-\dfrac{64}{3}\forall x\)

Dấu "=" xảy ra khi \(x-\dfrac{1}{3}=0\) hay \(x=\dfrac{1}{3}\)

Vậy MINf(x) = \(-\dfrac{64}{3}\) khi x = \(\dfrac{1}{3}\).

2/ \(f\left(x\right)=5x^2+7x\)

\(=5\left(x^2+\dfrac{7}{5}x\right)=5\left(x^2+\dfrac{7}{5}x+\dfrac{49}{100}-\dfrac{49}{100}\right)\)

\(=5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\)

Ta có: \(5\left(x+\dfrac{7}{10}\right)^2\ge0\forall x\Rightarrow5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\ge-\dfrac{49}{20}\forall x\)

Dấu "=" xảy ra khi \(x+\dfrac{7}{10}=0\) hay \(x=-\dfrac{7}{10}\)

Vậy MINf(x) = \(-\dfrac{49}{20}\) khi x = \(-\dfrac{7}{10}\).

1/ \(f\left(x\right)=-5x^2+9x-2\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{2}{5}\right)\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{81}{100}-\dfrac{41}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\)

Ta có: \(-5\left(x-\dfrac{9}{10}\right)^2\le0\forall x\Rightarrow-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\le\dfrac{41}{20}\forall x\)

Dấu "=" xảy ra khi \(x-\dfrac{9}{10}=0\) hay \(x=\dfrac{9}{10}\)

Vậy MAXf(x) = \(\dfrac{41}{20}\) khi x = \(\dfrac{9}{10}\)

2/ \(f\left(x\right)=-7x^2+3x=-7\left(x^2-\dfrac{3}{7}x+\dfrac{9}{196}\right)+\dfrac{9}{28}\)

\(=-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\)

Ta có: \(-7\left(x-\dfrac{3}{14}\right)^2\le0\forall x\Rightarrow-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\le\dfrac{9}{28}\forall x\)

Dấu "=" xảy ra khi \(x-\dfrac{3}{14}=0\) hay x = \(\dfrac{3}{14}\)

Vậy MAXf(x) = \(\dfrac{9}{28}\) khi x = \(\dfrac{3}{14}\).

Rùa Con
Xem chi tiết
Noname16116
Xem chi tiết
Hoàng Miêu
Xem chi tiết
sakura haruko
Xem chi tiết
sakura haruko
Xem chi tiết
Anh Thu Pham
Xem chi tiết
Nguyen Bao Anh
15 tháng 1 2017 lúc 16:48

a) 5x - 14 = x - 34

5x - x = -34 + 14

4x = -20

x = -20 : 4

x = -5

b) x - 3 - (3x + 2) = -15

x - 3 - 3x - 2 = -15

x - 3x = -15 + 3 + 2

-2x = -10

x = (-10) : (-2)

x = 5

c) 2(x  - 12) + 19 = x + (-34)

2x - 24 + 19 = x + (-34)

2x - x = -34 + 24 - 19

x = -29

d) 2(x - 33) - 3(x - 43) = 96 - 115

2x - 66 - 3x + 129 = 96 - 115

2x - 3x = 96 - 115 + 66 - 129

-x = -82

x = 82

e) 2x + 3 - 9x = -11

2x - 9x = -11 - 3

-7x = -14

x = (-14) : (-7)

x = 2

f) -(x + 3 - 84) = (x + 70 - 71) - 6

-x - 3 + 84 = x + 70 - 71 - 6

-x - x = 70 - 71 - 6 - 84

-2x = -91

x = (-91) : (-2)

x = 45,5

Ngunhucho
Xem chi tiết

F(x)=62+5x+8+3x-3x2+3x3

      =(36+8)+(5x+3x)-3x2+3x3

      =3x3-3x2+8x+44

G(x)=12x2-6-9x2+3x3

       =3x3+(12x2-9x2)-6

       =3x3+3x2-6

F(x)+G(x)=3x3-3x2+8x+44+3x3+3x2-6

                =(3x3+3x3)+(-3x2+3x2)+8x+(44-6)

                =6x3+8x+38

Hà Quang Minh
6 tháng 8 2023 lúc 21:23

\(F\left(x\right)=G\left(x\right)\\ \Rightarrow6^2-5x+8+3x-3x^2+3x^3=12x^2-6-9x^2+3x^3\\ \Leftrightarrow-3x^2-2x+44=3x^2-6\\ \Leftrightarrow6x^2+2x-50=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{301}}{6}\\x=\dfrac{-1-\sqrt{301}}{6}\end{matrix}\right.\)

Trần Quốc Thịnh
6 tháng 8 2023 lúc 21:25

Ta có : F(x)=G(x) suy ra: 3x^3 + 3x^2 - 2x + 8 = 3x^3+3x^2 -6

                                        3x^3+ 3x^2 -2x +8 -3X^3- 3x^2+6=0

                                         (3x^3-3x^3)+(3x^2-3x^2)-2x+(8+6)=0

                                         -2x +14 =0

                                          2x         =14

                                            x          = 7