10x!=?
P=x^10-10x^9+10x^8-10x^7+10x^6-10x^5+10x^4-10x^3+10x^2-10x+10
tisng P với x+9
x^14 -10x^13+10x^12-10x^11+...+10x^2-10x+10 tại x=9
D=x^14-10x^13+10x^12-10x^11+.....+10x^2-10x+10 tại x=7
Giaỉ các phương trình sau
\(a,\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)\(a,\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
a) Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-1971}{29}-\dfrac{x^2-10x-1973}{27}=0\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)
mà \(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)
nên \(x^2-10x-2000=0\)
\(\Leftrightarrow x^2+40x-50x-2000=0\)
\(\Leftrightarrow x\left(x+40\right)-50\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)
Vậy: S={-40;50}
C = \(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)tại x = 9.
x=9 ⇒ 10= x+1 thay vào C ta đc
C = x14- (x+1).x13 +........ - (x+1).x +x+1
⇒C = x14-x14-x13+........ -x2 -x +x+1
⇒C =1
mk làm tóm tắt ít số hơn nếu bạn muốn dễ hiểu thì thay nhiều cái vào
Tính giá trị \(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
Rút gọn các biểu thức sau:
a)64x^3-48x^2+12x-1
b)(10x-1)(100x^2+10x+1)-10x(10x-1)(10x+1)
a: \(=\left(4x-1\right)^3\)
b: \(=1000x^3-1-10x\left(100x^2-1\right)\)
\(=-1+10x\)
tính giá trị biểu thức :
C = x^14 -10x^13 +10x^12-10x^11 + .....+ 10x^2 -10x+10 với x=9
Có x= 9 nên 10x^13=(9+1)x^13=(x+1)x^13=x^14+x^13
Tương tự thay vào C=x^14 - x^14 + x^13 - ....-x^2 - x +10=-x + 10=1
A= x^10-10x^9+10x^8-.....+10x^2-10x+1. Tính giá trị của A tại x=9
x=9
=>x+1=10
\(A=x^{10}-10x^9+10x^8-...+10x^2-10x+1\)
\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+1\)
\(=x^{10}-x^{10}-x^9+x^8+...+x^3+x^2-x^2-x+1\)
=-x+1
=-9+1=-8
Tính giá trị biểu thức \(A=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\) tại x = 9
Nếu \(x=9\Rightarrow10=x+1\)
Thay \(10=x+1\) vào A , ta được :
\(A=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
Vậy \(A=1\) tại \(x=9\)