bài 1 tìm các số x,y,z
a. x/2 = y/3 và xy = 54
1.tìm các số x,y,z biết rằng 1/2x=2/3y=3/4z và x-y =15
2.a)x/2=y/3 và xy=54
b) x/5=y/3 va x^2-y^2=4 (x,y>0)
tìm x, y, z biết
xy = 2 ; yz = =3 ; za = 54
Ta có:
\(xy.yz.zx=2.3.54\)
\(\Leftrightarrow x^2.y^2.z^2=324\)
\(\Leftrightarrow\left(xyz\right)^2=324\)
\(\Leftrightarrow\left(xyz\right)^2=18^2=\left(-18\right)^2\)
+ Khi \(\left(xyz\right)^2=18^2\Leftrightarrow xyz=18\)
Vậy \(\left\{{}\begin{matrix}x=18:3=6\\y=18:54=\dfrac{1}{3}\\z=18:2=9\end{matrix}\right.\)
+ Khi \(\left(xyz\right)^2=\left(-18\right)^2\Leftrightarrow xyz=-18\)
Vậy \(\left\{{}\begin{matrix}x=\left(-18\right):3=-6\\y=\left(-18\right):54=-\dfrac{1}{3}\\z=\left(-18\right):2=-9\end{matrix}\right.\)
Ta có: xy=2; yz=3; zx=54 => xy.yz.zx=2.3.54=324 => (xyz)2 = 324 =>xyz=18 hoặc xyz=-18 * nếu xyz=18 => x= xyz ÷ yz =18÷3=6 y=xy÷x= 2÷6=1/3 z=xyz÷x÷y=18÷6÷1/3=9* nếu xyz= -18 Tương tự ta có x=-6 ; y=-1/3 ; z=-9 Vậy : x=6 y=1/3 z=9 hoặc x=-6 y=-1/3 z=-9
\(\left\{{}\begin{matrix}xy=2\\yz=3\\xz=54\end{matrix}\right.\)
\(\Rightarrow xy.yz.xz=2.3.54\)
\(\Rightarrow x^2y^2z^2=324\)
\(\Rightarrow\left(xyz\right)^2=324\)
\(\Rightarrow xyz=\pm18\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}z=18:2=9\\x=18:3=6\\y=18:54=\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}z=-18:2=-9\\x=-18:3=-6\\y=-18:54=-\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)
Bài 4. Tìm các số nguyên x và y thỏa mãn (x+1).( y-2) =5 Bài 5. Tìm các số nguyên x và y thỏa mãn xy -2x + 3y
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
bài 1: tìm các số nguyên x và y sao cho
a, (x+3)(y+1)=3
b,(x-1)(xy+1)=2
c, xy-2x=5
\(a)\)
\(\left(x+3\right)\left(y+1\right)=3=1.3=\left(-1\right).\left(-3\right)\)
Ta có bảng sau:
\(x+3\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(y+1\) | \(3\) | \(-3\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) | \(0\) | \(-6\) |
\(y\) | \(2\) | \(-4\) | \(0\) | \(-2\) |
Vậy ...
\(b)\)
\(\left(x-1\right)\left(xy+1\right)=2=1.2=\left(-1\right).\left(-2\right)\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(xy+1\) | \(2\) | \(-1\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
\(y\) | \(\frac{1}{2}\) | Loại | \(0\) | \(2\) |
Vậy ...
\(c)\)
\(xy-2=5\)
\(\Leftrightarrow x\left(y-2\right)=5=1.5=\left(-1\right).\left(-5\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(y-2\) | \(5\) | \(-5\) | \(1\) | \(-1\) |
\(y\) | \(7\) | \(-3\) | \(3\) | \(1\) |
Vậy ...
giúp mình vs ạ...5* luôn ạ
bài 1: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 2: hai số x và y thỏa mãn các điều kiện x+y=-1 và xy=-12. tính giá trị của các biểu thức sau:
a)A=x^2+2xy+y^2 b) B=x^2+y^2 c)C=x^3+3x^2y+3xy^2+y^3 d) D=x^3+y^3
Bài 1: Tìm x € Z a)1−3x chia hết cho x−2 b)3x+2 chia hết cho 2x+1 Bài 2: Tìm các số nguyên a)x(3−y)−y=0 b)xy+2x+2y=0 c)xy−2x+4y=1 d)x(y+1)+y=0
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố
Bài 1: Cho p và 2p+1 (p>3) là số nguyên tố. Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 2: Tìm (a,b) với a,b thuộc N, biết:
a) ( 2a - 1) ( 3+ b) = 54
b) ( 3a- 4) ( b- 2) = 15
Bài 5: Tìm các số tự nhiên x, y thỏa mãn:
a) 22x . 3y = 12
b) ( 2x)2 . 3y = 18
c) ( 2x)2 . 3y = 12x
d) ( x + 1) ( xy - 1 ) = 3
Bài 3 Tìm các số nguyên x,y biết
a.(x+1)(y-2)=3
b.(x+1)(xy-1)=5
c.(2x+1)(y+3)=4
d.(xy-3)(y+2)=4
a)
(x+1)(y-2) = 3
=> x+1 và y-2 là các ước của 3
Ư(3) = {1; -1; 3; -3}
Lập bảng giá trị:
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy các cặp (x,y) cần tìm là:
(0; 5); (2; 3); (-2; -1); (-4; 1).