Tìm x , biết :
a, \(x^2-9+\left(x+3\right)=0\)
b, \(x^2-5x+6=0\)
Tìm x , biết :
a. \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
b. \(2x^3-50x=0\)
c.\(5x^2-4\left(x^2-2x+1\right)-5=0\)
d. \(x^3-x=0\)
e. \(27x^3-27x^2+9x-1=1\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
BT8: Tìm x, biết
\(a,\left(x-2\right)\left(x-3\right)=0\)
\(b,x^2-5x=0\)
\(c,x^2-9=0\)
\(d,4x^2-25=0\)
`@` `\text {Ans}`
`\downarrow`
`a,`
`(x - 2)(x - 3) =0`
`<=>`\(\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0+2\\x=0+3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy, `S = {2; 3}`
`b,`
`x^2 - 5x = 0`
`<=> x(x - 5) = 0`
`<=>`\(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=0+5\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy, `S = {0; 5}`
`c,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`d,`
`4x^2 - 25 = 0`
`<=> 4x^2 = 25`
`<=> x^2 = 25/4`
`<=> x^2 = (+-5/2)^2`
`<=> x = +-5/2`
Vậy,` S = {5/2; -5/2}.`
a: =>x-2=0 hoặc x-3=0
=>x=2 hoặc x=3
b: =>x(x-5)=0
=>x=0 hoặc x=5
c: =>(x-3)(x+3)=0
=>x=3 hoặc x=-3
d: =>(2x-5)(2x+5)=0
=>x=5/2 hoặc x=-5/2
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
BT3: Tìm x
\(a,\left(x+2\right)^2-9=0\)
\(b,x^2-2x+1=25\)
\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\)
\(a,\left(x+2\right)^2-9=0\\ \Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{1;-5\right\}\)
\(b,x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{6;-4\right\}\)
\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\\ \Leftrightarrow25x^2+10x+1-25x^2+9=30\\ \Leftrightarrow25x^2+10x-25x^2=30-1-9\\ \Leftrightarrow10x=20\\ \Leftrightarrow x=2\\ Vậy\dfrac{ }{ }S=\left\{2\right\}\)
\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\\ \Leftrightarrow x^3-1-x\left(x^2-4\right)=5\\ \Leftrightarrow x^3-1-x^3+4x=5\\ \Leftrightarrow x^3-x^3+4x=5+1\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\dfrac{ }{ }S=\left\{\dfrac{3}{2}\right\}\)
a: =>(x+2-3)(x+2+3)=0
=>(x-1)(x+5)=0
=>x=1 hoặc x=-5
b: =>(x-1)^2=25
=>x-1=5 hoặc x-1=-5
=>x=-4 hoặc x=6
c: =>25x^2+10x+1-25x^2+9=30
=>10x+10=30
=>x+1=3
=>x=2
d: =>x^3-1-x(x^2-4)=5
=>x^3-1-x^3+4x=5
=>4x=6
=>x=3/2
Tìm x, biết :
a/ \(\dfrac{1}{3}x\left(x^2-4\right)=0\)
b/ \(x\left(x+5\right)=x+5\)
c/ \(x^3-\dfrac{1}{9}x=0\)
3)\(^2-\left(x+5\right)^2=0\)
e/ \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
f/ \(x\left(2x-3\right)-6+4x=0\)
g/ \(2\left(3x-2\right)^2-9x^2+4=0\)
h/ \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
i/ \(4x^2+9x+5=0\)
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Tìm x biết
a) (8-5x).(x+2)+4.(x-2).(x+1)+2.(x-2).(x+2)=0
b)\(\left(-\frac{2}{5}+x\right):\frac{7}{9}+\left(-\frac{3}{5}+\frac{5}{6}\right):\frac{7}{9}=0\)
c)\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2004}\)
BT9: Tìm x biết
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\)
\(10,\left(x+3\right)^2-x^2=45\)
\(11,\left(5x-4\right)^2-49x^2=0\)
\(12,16\left(x-1\right)^2-25=0\)
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)
\(10,\left(x+3\right)^2-x^2=45\)
\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)
Vậy \(S=\left\{6\right\}\)
\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)
\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)
Giải phương trình :
a.\(x^2+5x^2-3=0\)
b.\(x^2-\left(2\sqrt{3}-1\right)x+4\sqrt{3}-6=0\)
c.\(x^2-6x+9=0\)
d.\(x^2-4\sqrt{3}x-4=0\)
c: \(\Leftrightarrow x-3=0\)
hay x=3
cho A=\(\left(\dfrac{2-x}{x+3}-\dfrac{3-x}{x+2}+\dfrac{2-x}{x^2+5x+6}\right):\left(1-\dfrac{x}{x-1}\right)\)
rút gọn
tìm x để A =0
A>0
ĐKXĐ: \(x\ne-3,x\ne-2,x\ne1\)
\(A=\dfrac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\dfrac{x-1-x}{x-1}\)
\(=\dfrac{-\left(x+3\right)}{\left(x+3\right)\left(x+2\right)}.\left(1-x\right)=\dfrac{x-1}{x+2}\)
\(A=0\Leftrightarrow\dfrac{x-1}{x+2}=0\Leftrightarrow x=1\left(ktm\right)\Leftrightarrow S=\varnothing\)