cho số tự nhiên n, n không chia hết cho 3.CMR :n^2 /3 dư 1
Cho n là số tự nhiên, n>3, n không chia hết cho 3. CMR n2:3 dư 1
Đề bài của em bị sai nhé.
Ta có thể sửa thành hai đề bài đúng:
Bài 1: Cho n là số tự nhiên, n>3, n chia hết cho 3. CMR n2 chia hết 3.
Giải:
n chia hết 3 nên n có dạng 3k (k là số tự nhiên)
Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.
Bài 2: Cho n là số tự nhiên, n>3, n không chia hết cho 3. CMR n2:3 dư 1
Giải:
Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)
Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.
Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.
Vậy n2 luôn chia 3 dư 1.
Bài giải :
n chia hết 3 nên n có dạng 3k (k là số tự nhiên)
Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.
Bài 2: Cho n là số tự nhiên, n>3, n không chia hết cho 3. CMR n2:3 dư 1
Giải:
Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)
Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.
Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.
Vậy n2 luôn chia 3 dư 1.
Đúng 2 Sai 1
1)Khi chia số tự nhiên n cho 12 ta được số dư là 9.Hỏi số n có chia hết cho 3 và 6 không?
2)Chia số tự nhiên n cho 111 có số dư là 74.Hỏi n có chia hết cho 37 không?
1) n\(⋮\)3 vì 12 \(⋮\)3 và 9\(⋮\)3
n ko chia hết 6 vì như trên
....................
1) Khi chia số tự nhiên a cho 96, được số dư là 24. Hỏi số a có chia hết cho 6. cho 18 không ?
2) Cho số tự nhiên không chia hết cho 5 và khi chia chúng cho thì được các số dư khác nhau. Chứng minh rằng tổng chủa 5 đó chia hết cho 5
3)chứng tỏ rằng 1 số khi chia cho 60 dư 45 thì hia hết cho 15 mà không chia hết cho 30
4)Chứng minh rằng không có số tự nhiên nào chia cho 21 dư 5 còn chia 9 dư 1
5)Tìm số tự nhiên n để:
a)n+4 chia hết n
b)3n+5 chia hết cho n
c)27-4n chia hết cho n
(Các bạn giúp mình với, làm bài nào cũng được)
d)n+6 chia hết cho n+1
e)2n+3 chia hết cho n-2
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
d) Ta có: n + 6 chia hết cho n+1n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
CMR nếu n là số tự nhiên ko chia hết cho 3 thì n2 chia 3 dư 1
Cho P=(n+1)(n+2)(n+3)...(2n-1)(2n) với n là số tự nhiên
a,CMR P chia hết cho 2n
b,CMR P không chia hết cho 22n+1
Bài 1:CMR với mọi q,p là số tự nhiên, thì:
a,105p+30q chia hết cho 5
b,105p+5q+1 chia cho 5 dư 1
Bài 2: CMR: (n2+n+1) ko chia hết cho 5 (n là số tự nhiên)
Bài 3:CMR trong hai số chẵn liên tiếp có một số chia hết cho 4.
nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là
nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là
n^2 khi chia cho 3 sẽ có số dư là 1