Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Nguyễn Phương
Xem chi tiết
ST
2 tháng 5 2017 lúc 13:05

2/

S = 2 + 22 + 23 +...+ 299

= (2+22+23) +...+ (297+298+299)

= 2(1+2+22)+...+297(1+2+22)

= 2.7 +...+ 297.7

= 7(2+...+297) chia hết cho 7

S = 2+22+23+...+299

= (2+22+23+24+25)+...+(295+296+297+298+299)

= 2(1+2+22+23+24)+...+295(1+2+22+23+24)

= 2.31+...+295.31

= 31(2+...+295) chia hết cho 31

3/

A = 1+5+52+....+5100 (1)

5A = 5+52+53+...+5101 (2)

Lấy (2) - (1) ta được

4A = 5101 - 1

A = \(\frac{5^{101}-1}{4}\)

ST
2 tháng 5 2017 lúc 13:12

4/

Đặt A là tên của biểu thức trên

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy...

5/

a, Gọi UCLN(n+1,2n+3) = d

Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d

           2n+3 chia hết cho d

=> 2n+2 - (2n+3) chia hết cho d

=> -1 chia hết cho d => d = {-1;1}

Vậy...

b, Gọi UCLN(2n+3,4n+8) = d

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d 

=> 4n+6 - (4n+8) chia hết cho d

=> -2 chia hết cho d => d = {1;-1;2;-2}

Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}

Vậy...

ST
2 tháng 5 2017 lúc 13:17

6/

a,Vì B > 1

\(\Rightarrow B=\frac{2016^{2016}}{2016^{2016}-3}>\frac{2016^{2016}+2}{2016^{2016}-3+2}=\frac{2016^{2016}+2}{2016^{2016}-1}=A\) 

Vậy A < B

b, C = \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Nguyệt Nguyệt
Xem chi tiết
Nguyễn Thế Mãnh
8 tháng 1 2017 lúc 18:11

S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\)

2S = \(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\)

S = 2S - S = \(\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\right)\) - \(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\right)\)

S = 1 - \(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=> S < 1 (đpcm)

Nguyen thi quynh anh
5 tháng 3 2019 lúc 20:42

S=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)

2S=\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

S=2S-S=(\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\))-(\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\))

S=1-\(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=>S<1

Nguyễn Khánh Toàn
Xem chi tiết
Dương Thanh Loan
23 tháng 3 2019 lúc 12:40

2S = 1 + 1/2 + 1/2^2 + ... + 1/2^29

2S - S = 1- 1/2^29

S =  1 - 1/2^29 < 1

vậy S < 1

Hoàng Xuân Anh Tuấn
23 tháng 3 2019 lúc 12:42

S=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{30}}\)

2S= \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{29}}\)

2S - S=( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{29}}\)) - (\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{30}}\))

S= \(1-\frac{1}{2^{30}}\)

S= \(\frac{2^{30}}{2^{30}}-\frac{1}{2^{30}}\)

S= \(\frac{2^{30}-1}{2^{30}}\)

Trần Lâm Thiên Hương
Xem chi tiết
Trần Quốc Đạt
8 tháng 1 2017 lúc 17:24

Giả sử có tấm bìa diện tích 1.

Ta cắt ra 1/2 tấm bìa, lấy đi 1 phần, rồi lại cắt ra 1/2 tấm còn lại (tức là 1/4), rồi lấy đi một phần...

Cứ làm như vậy 2013 lần thì ta đã lấy đi một diện tích \(S\), nhưng vẫn còn một góc bìa chưa bị lấy đi.

Vậy \(S< 1\)

Hiền Thảo Bùi
Xem chi tiết
lâm phạm khánh
Xem chi tiết
❤Firei_Star❤
Xem chi tiết
Edogawa Conan
7 tháng 8 2018 lúc 14:28

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\)

 \(2S=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\right)\)

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)

\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{2018}}\right)\)

\(S=1-\frac{1}{2^{2018}}< 1\)

Nguyễn Phúc Hậu
7 tháng 8 2018 lúc 14:32


\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{...1}{2^{2018}}\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)
\(2S-S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{...1}{2^{2018}}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2018}}\)
\(S=1-\frac{1}{2^{2018}}\)
\(Mà 1-\frac{1}{2^{2018}}< 1\)
\(\Rightarrow S< 1\)

❔♥BFF♥ I am anonymous♥...
30 tháng 3 2019 lúc 15:07

Nguyễn Phúc Hậu Đã trổ tài r đó, 

Bùi Hiền Thảo
Xem chi tiết
Nguyễn Thế Bảo
30 tháng 3 2016 lúc 20:38

Mình chọn nhỏ hơnhaha

Bùi Hiền Thảo
30 tháng 3 2016 lúc 20:47

lm tốt nhưng mink k tích vì k có cách trình bày

 

Kinomoto Sakura
31 tháng 3 2016 lúc 14:54

<

Lưu Như Ý
Xem chi tiết
Truong_tien_phuong
24 tháng 4 2017 lúc 15:55

Ta có: 

\(A=\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\)

\(\Rightarrow2A=1+\frac{1}{2}+.........+\frac{1}{2^{2016}}\)

Khi đó: 

\(2A-A=\left(1+\frac{1}{2}+.....+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2017}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{2017}}\)

\(\Rightarrow A=\frac{2^{2017}-1}{2^{2017}}\)

\(\Rightarrow A< 1\)

VẬy: A < 1

Camehameha
24 tháng 4 2017 lúc 15:57

Ta có:                                                                       1/2+1/2^2+...+1/2^2017<1/1.2+1/2.3+...+1/2016.2017

1/2<1/1.2

1/2^2<1/2.3

..........

1/2^2017<1/2016.2017