Chứng minh rằng n3 - n chia hết cho 6 với mọi số nguyên n.
Giúp mk nha mk đang cần gấp
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Chứng minh rằng : n( n + 1)(n + 2 ) ( n + 3) chia hết cho 3 và 8 với mọi số nguyên n.
Mk cần gấp lắm ạ
Bạn nào giúp đc thì mk tick nha
Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8
chứng tỏ rằng với mọi số nguyên dương ta có (n+2)(n+5) chia hết cho 2
Giúp mk với!! Mk đang cần gấp!! Tks mn nhìu
+nếu n là số chẵn thì n+2 là số chẵn nên chia hết cho 2,suy ra tích trên chia hết cho 2
+nếu n là số lẻ thì n+5 là số chẵn,chia hết cho 2,vậy tích trên cx chia hết cho 2
Vậy tích trên chia hết cho 2 với mọi n thuộc N
chứng tỏ rằng với mọi số tự nhiên n(n+3)(n+6) chia hết cho 2
giải giùm mk nha
mk cần gấp
n(n+3)(n+6)
n(n2+9n+18)
n[(n+1)(n+2)+6n+16)]
n(n+1)(n+2)+6n2+16n chia hết 2
kb với mình nhé
Chứng minh rằng n3 – n chia hết cho 6 với mọi số nguyên n.
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
bài 58: chứng minh rằng n3 - n chia hết cho 6 với mọi số nguyên n.
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3
Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Chứng minh rằng : n^2(n+1 ) + 2n(n+1) luôn chia hết cho 6 với mọi số nguyên n. AI biết làm bài này giúp mik nha mik đang cần gấp lắm .cảm ơn trước !!!
5, Chứng minh rằng với mọi n\(\in\)N thì n2+n+6 không chia hết cho 5
6, Tìm x\(\in\)N,biết :
x chia 8 dư 3; x chia 125 dư 12
Mấy bạn giúp mk nha, mk đang cần gấp
Nhanh mk tik
5,
Ta có :n2 + n + 6 = n(n + 1 ) + 6
Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) không có c/s tận cùng là 9 và 4
=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )
Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N
6,
Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12
Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3
Số có tận cùng là 387 thì chia cho 8 sẽ dư 3
=> các số có tận cùng là 387
6, Tìm x∈N,biết :
x chia 8 dư 3; x chia 125 dư 12
giải
Theo bài ra, ta có:
x chia 8 dư 3 \(\Rightarrow x-3⋮8\)và
x chia 125 dư 12\(\Rightarrow x-12⋮125\)
Có \(x-3⋮8\)nên \(x-3+616⋮8\Leftrightarrow x+613⋮8\)\(\left(1\right)\)
Có \(x-12⋮125\)nên \(x-12+625⋮125\Leftrightarrow x+613⋮125\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow x+613\in BC\left(8;125\right)\Rightarrow x+613\in B\left(1000\right)=\left\{0,1000,2000,...\right\}\)
Vì \(x\in N\)nên \(x>0\)
\(\Rightarrow x+613=1000\)\(\Rightarrow x=1000-613=387\)
\(\Rightarrow x+613=2000\Rightarrow x=2000-613=1387\)
...........................
Vậy x là số tự nhiên sao cho x=1000k-613\(\left(k\inℕ^∗\right)\)
Chứng tỏ rằng với n thuộc N thì 10n + 18.n-1 chia hết cho 27
Mọi người nhanh lên giúp mk nha mk đang cần gấp lắm
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n
=9.(111....1(n chữ số 1)+2n)
xét --------------------------------=11...1-n+3n
dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n
=>11....1-n chia hết cho 3
=>11.....1-n+3 chia hết cho 3
=>10n+18n-1 chia hết cho 27