Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tagmin
Xem chi tiết

A

Đỗ Tuệ Lâm
10 tháng 3 2022 lúc 10:37

chọn A

Vũ Quang Huy
10 tháng 3 2022 lúc 10:38

a

Linh Ngoc
Xem chi tiết
Nguyệt Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 22:49

a: \(M=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot x^3\cdot xy^2\cdot z^2=\dfrac{1}{2}x^4y^2z^2\)

Hệ số là 1/2

Biến là \(x^4;y^2;z^2\)

b: \(N=x^2y\left(4+5-3\right)=6x^2y=6\cdot2^2\cdot\left(-1\right)=-24\)

Bảo Thiii
Xem chi tiết
meme
16 tháng 9 2023 lúc 15:21

a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.

Thế Đan
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2021 lúc 19:57

a) Ta có: \(A=\left(-\dfrac{3}{4}x^2y^5z^3\right)\cdot\left(\dfrac{5}{3}x^3y^4z^2\right)\)

\(=\left(\dfrac{-3}{4}\cdot\dfrac{5}{3}\right)\cdot\left(x^2\cdot x^3\right)\cdot\left(y^5\cdot y^4\right)\cdot\left(z^3\cdot z^2\right)\)

\(=\dfrac{-5}{4}x^5y^9z^5\)

Tran canh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
31 tháng 5 2020 lúc 8:07

\(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\)

Ta có : \(a^2;\left(\frac{1}{a}\right)^2\ge0\forall a\Rightarrow3\left(a^2+\left(\frac{1}{a}\right)^2\right)\ge0\forall a\)

\(x^2;y^4;z^6\ge0\forall x;y;z\)

=> \(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\ge0\)

=> A luôn nhận giá trị không âm với mọi x, y, z

Để A = 0 => Ít nhất một giá trị = 0

=> Hoặc x = 0 ; y = 0 ; z = 0 thì A = 0 

Khách vãng lai đã xóa
Nguyễn Tuấn Hùng
Xem chi tiết
Quynhnhu
Xem chi tiết
Nguyễn Quang Đức
4 tháng 3 2018 lúc 16:15

Ta có: \(a^2,x^2,y^4,z^6\ge0\)với \(\forall a,x,y,z\)

Dấu "=" xảy ra khi \(a=x=y=z=0\)

Lại có: \(3\left(a^2+\frac{1}{a^2}\right)\)khác 0 với \(\forall a\)

Do đó để A = 0 thì x = 0 hoặc y = 0 hoặc z = 0

Tran canh
30 tháng 5 2020 lúc 14:20

Cho dơn thức A=3.(a^2+1/a^2).x^2.y^4.z^6 với a là hằng số: chứng minh đơn thức A luôn khong âm với mọi x,y,z và với giá trị nào của x,y,z thì A=0

Khách vãng lai đã xóa
Nguyễn Mai
Xem chi tiết