Những câu hỏi liên quan
Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 20:48

Áp dụng BĐT Cô-si:

\(a^2+3\ge2\sqrt{3a^2}=2\sqrt{3}a\)

Tương tự: \(b^2+3\ge2\sqrt{3}b\) ; \(c^2+3\ge2\sqrt{3}c\)

Cộng vế: \(a^2+b^2+c^2+9\ge2\sqrt{3}\left(a+b+c\right)\)

\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+9}{2\sqrt{3}}=\dfrac{9+9}{2\sqrt{3}}=3\sqrt{3}\)

\(\Rightarrow-\left(a+b+c\right)\ge-3\sqrt{3}\)

Tiếp tục áp dụng BĐT Cô-si:

\(\dfrac{a^4}{b+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(b+2\right)\ge2\sqrt{\dfrac{9a^4\left(b+2\right)}{\left(b+2\right)\left(2+\sqrt{3}\right)^2}}=\dfrac{6a^2}{2+\sqrt{3}}\) 

Tương tự:

\(\dfrac{b^4}{c+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(c+2\right)\ge\dfrac{6b^2}{2+\sqrt{3}}\)

\(\dfrac{c^4}{a+2}+\dfrac{9}{\left(2+\sqrt{3}\right)}\left(a+2\right)\ge\dfrac{6c^2}{2+\sqrt{3}}\)

Cộng vế:

\(P+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{6}{2+\sqrt{3}}\left(a^2+b^2+c^2\right)=\dfrac{54}{2+\sqrt{3}}\)

\(\Rightarrow P\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}.\left(3\sqrt{3}+6\right)\)

\(\Rightarrow P\ge\dfrac{27}{2+\sqrt{3}}=27\left(2-\sqrt{3}\right)\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

Đặng Công Minh Nghĩa
Xem chi tiết
Minh Hiếu
29 tháng 3 2022 lúc 20:34

Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)

Dấu "=" ⇔ a=b=c=3

Nguyễn Việt Lâm
29 tháng 3 2022 lúc 20:52

Áp dụng BĐT Cô-si:

\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\) 

Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)

Cộng vế:

\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 16:24

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Lê Song Phương
30 tháng 3 2022 lúc 7:32

Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)

Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)

\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)

Vậy BĐT được cm 

Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Khách vãng lai đã xóa
Đỗ Đức Hải
29 tháng 3 2022 lúc 16:21

Nma mik lớp 4

Khách vãng lai đã xóa
Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 16:25

Kiểm tra lại mẫu số của 3 phân thức

Math is Hard ミ★
29 tháng 3 2022 lúc 16:28

Mẫu số của \(b+1\ne c+2,a+2.\)

Xem lại đề bạn

Khách vãng lai đã xóa
Đỗ Đức Hải
29 tháng 3 2022 lúc 16:21

Tôi học chuyên toán nha

Khách vãng lai đã xóa
Quyết Tâm Chiến Thắng
Xem chi tiết
Nyatmax
11 tháng 9 2019 lúc 12:05

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

Nyatmax
11 tháng 9 2019 lúc 12:15

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)

tth_new
11 tháng 9 2019 lúc 18:20

Bài 2 Dùng Cauchy-Schwarz dạng Engel là ra:D

Bài 3:Đừng vội dùng Cauchy-Schwarz dạng Engel ngay kẻo bị phức tạp:v Thay vào đó hãy khai triển nó ra:

\(A=x^2+y^2+2\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{x^2}+\frac{1}{y^2}\)

\(\ge4+2.2+\frac{4}{x^2+y^2}=4+4+1=9\)

Đẳng thức xảy ra khi \(x=y=\sqrt{2}\)

Bài 4: Dùng Cauchy or Bunhiacopxki là ok!

Lê Thế Minh
Xem chi tiết

\(Ta có: \frac{{a^5 }}{{b^3 + c^2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }}\mathop \ge \frac{{3a^2 }}{2}\)

\(\Rightarrow \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - (\frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }})\)

\(Do đó: \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - \frac{{\sqrt {2a(b^3 + c^2 )} }}{2}\mathop \ge \frac{{3a^2 }}{2} - \frac{{2a + b^3 + c^2 }}{4}\)

\(CMTT \frac{{b^5 }}{{c^3 + a^2 }}\mathop \ge \frac{{3b^2 }}{2} - \frac{{2b + c^3 + a^2 }}{4}\)\(\frac{{c^5}}{{a^3+b^2}}\mathop \ge \frac{{3c^2 }}{2} - \frac{{2c + a^3 + b^2 }}{4}\)

\(M \ge \frac{{3(a^2 + b^2 + c^2 )}}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)

\(M \ge \frac{9}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)

Áp dụng Bunhiacoopski ta có:

\(\sqrt {(a^4+b^4+c^4 )(a^2+b^2+c^2)}=\sqrt {(a^4 +b^4+ c^4 ).3}\ge a^3+b^3+c^3 \)

\(\sqrt {(a^4 + b^4 + c^4 )(1 + 1 + 1)} = \sqrt {(a^2 + b^2 + c^2 ).3} \ge a^2 + b^2 + c^2 \Leftrightarrow a^4 + b^4 + c^4 \ge 3\)

Ta có: \(3 = a^2 + b^2 + c^2 \ge \frac{{(a + b + c)^2 }}{3} \Leftrightarrow a^2 + b^2 + c^2 \ge a + b + c\) 

\(Đặt t=x^4+y^4+z^4 (t \ge 3) cần CM để trở thành S \ge \frac{{4t - 9 - \sqrt {3t} }}{4}\ge 0\)

\(Ta có: S\ge \frac{{4t - 9 - \sqrt {3t} }}{4} = \frac{{3(t - 3) + \sqrt t (\sqrt t - \sqrt 3 )}}{4} \ge 0 \)
\(Do đó: M\geq \frac{9}{2}\)

Phần đầu mình thiếu nha

\(\frac{a^5}{b^3+c^2}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\ge\frac{3a^2}{2}\)

=> \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\left(\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\right)\)

Do đó \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\frac{\sqrt{2a\left(b^3+c^2\right)}}{2}\ge\frac{3a^2}{2}-\frac{\left(2a+b^3+b^2\right)}{4}\)

CMTT \(\frac{b^5}{c^3+a^2}\ge\frac{3b^2}{2}-\frac{\left(2b+c^3+a^2\right)}{4},\frac{c^5}{a^3+b^2}\ge\frac{3c^2}{2}-\frac{\left(2c+a^3+b^2\right)}{4}\)

alibaba nguyễn
7 tháng 12 2017 lúc 9:24

Ta có:

\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a}{2}\ge\dfrac{3a^2}{2}\)

\(\Rightarrow M\ge\dfrac{3}{2}\left(a^2+b^2+c^2\right)+a^4+b^4+c^4-\dfrac{1}{4}\left(a^2+b^2+c^2+a^3+b^3+c^3\right)-\dfrac{1}{2}\left(a+b+c\right)\)

\(\ge\dfrac{5}{4}\left(a^2+b^2+c^2\right)+\dfrac{4}{3}\left(a^3+b^3+c^3\right)-1-\dfrac{1}{4}\left(a^3+b^3+c^3\right)-\dfrac{1}{4}\left(a^2+b^2+c^2\right)-\dfrac{3}{4}\)

\(=\left(a^2+b^2+c^2\right)+\dfrac{13}{12}\left(a^3+b^3+c^3\right)-\dfrac{7}{4}\)

\(=\dfrac{5}{4}+\dfrac{13}{12}\left(a^3+b^3+c^3\right)\)

\(\ge\dfrac{5}{4}+\dfrac{3}{2}.\dfrac{13}{12}\left(a^2+b^2+c^2-1\right)=\dfrac{9}{2}\)

Dấu = xảy ra khi \(a=b=c=1\)      

Khánh Ngọc
Xem chi tiết
Nguyễn Minh Đăng
17 tháng 10 2020 lúc 19:55

1. Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)

Áp dụng Cauchy ta được:

\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)

\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)

\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)

\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)

\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)

\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)

\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)

\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)

\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)

Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa
Edogawa Conan
Xem chi tiết
Phan Nghĩa
8 tháng 8 2020 lúc 15:34

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
tth_new
8 tháng 8 2020 lúc 20:03

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

Khách vãng lai đã xóa
Tạ Duy Phương
Xem chi tiết