Những câu hỏi liên quan
Khương Vũ Phương Anh
Xem chi tiết
oOo Min min oOo
Xem chi tiết
alibaba nguyễn
10 tháng 9 2018 lúc 9:55

Sửa đề: \(Minf\left(x,y,z\right)=\frac{\left(x+y+z\right)^6}{xy^2z^3}\)

\(\frac{\left(x+y+z\right)^6}{xy^2z^3}=\frac{\left(x+\frac{y}{2}+\frac{y}{2}+\frac{z}{3}+\frac{z}{3}+\frac{z}{3}\right)^6}{xy^2z^3}\)

\(\ge\frac{\left(6\sqrt[6]{x.\frac{y^2}{4}.\frac{z^3}{27}}\right)^6}{xy^2z^3}=\frac{6^6}{4.27}=432\)

oOo Min min oOo
10 tháng 9 2018 lúc 23:31

alibaba nguyễn bn giải kĩ hơn 1 chút cho mk vs

OoO Min min OoO
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Hung nguyen
9 tháng 12 2017 lúc 11:17

\(G=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

\(=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}+1+1\right)-\left(1+x^2y^2\right)^2-\dfrac{1}{2}\)

\(\ge x^4y^4+x^4y^4-\dfrac{3}{2}-2x^2y^2-x^4y^4\)

\(=x^4y^4-2x^2y^2-\dfrac{3}{2}=\left(x^2y^2-1\right)^2-\dfrac{5}{2}\ge-\dfrac{5}{2}\)

Dấu = xảy ra khi: \(x^2=y^2=1\)

Đức Trần
9 tháng 12 2017 lúc 10:31

Theo Cô si:\(\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)\ge\dfrac{1}{2}.2.\sqrt{x^8y^8}hay\ge x^4y^4\)

tương tự có \(\dfrac{1}{4}\left(x^{16}+y^{16}\right)\ge\dfrac{x^4y^4}{2}\)

Dấu = xảy ra ⇔ x= \(\pm y\)

Khi đó G = \(\dfrac{3}{2}x^4y^4-1-2x^2y^2-x^4y^4=\dfrac{1}{2}\left(x^4y^4-4x^2y^2+\text{4}\right)-3\)

G min = -3 khi \(x^4y^4-4x^2y^2+4=0\Leftrightarrow x^2y^2-2=0\) mà x=+-y suy ra x^4 =2 hay x=\(\pm\sqrt[4]{2}\)

Vậy có 4 cặp nghiệm thỏa mãn (x,y)=(\(\sqrt[4]{2},\sqrt[4]{2}\))\(\left(\sqrt[4]{2},-\sqrt[4]{2}\right),\left(-\sqrt[4]{2},\sqrt[4]{2}\right),\left(-\sqrt[4]{2},-\sqrt[4]{2}\right)\)

:vvv
Xem chi tiết
Trên con đường thành côn...
27 tháng 7 2021 lúc 21:50

undefinedundefined

Trên con đường thành côn...
27 tháng 7 2021 lúc 21:58

undefined

Lưu Thị Thảo Ly
Xem chi tiết
Hung nguyen
25 tháng 8 2017 lúc 15:48

Gọi cái thiệt gớm đó là P

Ta có:

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Ta có:

\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64y}+\dfrac{1+y}{64x}\ge3\sqrt[3]{\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}.\dfrac{1+x}{64y}.\dfrac{1+y}{64x}}=\dfrac{3}{16z}\)

\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{64x}-\dfrac{1}{64y}-\dfrac{1}{32}\left(1\right)\)

Tương tự ta cũng có:

\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{64y}-\dfrac{1}{64z}-\dfrac{1}{32}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{64z}-\dfrac{1}{64x}-\dfrac{1}{32}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta được

\(P\ge\dfrac{3}{16}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)

\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)

Dấu = xảy ra khi \(x=y=z=3\)

Hung nguyen
26 tháng 8 2017 lúc 8:49

Đặt cái ban đầu là P

Ta có: \(xy+yz+zx=xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Ta lại có:

\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64x}+\dfrac{1+y}{64y}\ge\dfrac{3}{16z}\)

\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{32}-\dfrac{1}{64x}-\dfrac{1}{64y}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{32}-\dfrac{1}{64y}-\dfrac{1}{64z}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{32}-\dfrac{1}{64z}-\dfrac{1}{64x}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta có:

\(P\ge\dfrac{3}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)

\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)

Dấu = xảy ra khi \(x=y=z=3\)

Son Goku
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 21:06

a) Ta có: \(P=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(=\left(\dfrac{2}{\sqrt{xy}}+\dfrac{1}{x}+\dfrac{1}{y}\right):\dfrac{x\sqrt{x}+y\sqrt{x}+x\sqrt{y}+y\sqrt{y}}{x\sqrt{xy}+y\sqrt{xy}}\)

\(=\left(\dfrac{x+2\sqrt{xy}+y}{xy}\right):\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

Lê Thị Thục Hiền
5 tháng 7 2021 lúc 21:11

a) Đk:\(x>0;y>0\)

\(P=\left[\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}.\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{x\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{xy}+y\sqrt{xy}}\)

\(=\left[\dfrac{2}{\sqrt{xy}}+\dfrac{x+y}{xy}\right]:\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)

\(=\dfrac{2\sqrt{xy}+x+y}{xy}:\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}.\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

b) \(xy=16\Leftrightarrow x=\dfrac{16}{y}\)

\(P=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=\dfrac{1}{\sqrt{\dfrac{16}{y}}}+\dfrac{1}{\sqrt{y}}=\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\)

Áp dụng AM-GM có:

\(\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\ge2\sqrt{\dfrac{\sqrt{y}}{4}.\dfrac{1}{\sqrt{y}}}=1\)

\(\Rightarrow P\ge1\)

Dấu "=" xảy ra khi \(y=4\Rightarrow x=4\)

Vậy x=y=4 thì P đạt GTNN là 1

Nguyễn Khánh Huyền
Xem chi tiết
Akai Haruma
19 tháng 3 2018 lúc 15:36

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \((a,b,c)=\left(\frac{1}{x}; \frac{1}{y}; \frac{1}{z}\right)\Rightarrow a+b+c=1\)

BĐT cần chứng minh trở thành:

\(P=\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(c+1)(a+1)}\geq \frac{1}{16}(*)\)

Thật vậy, áp dụng BĐT Cauchy ta có:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)

\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq 3\sqrt[3]{\frac{a^3}{64^2}}=\frac{3a}{16}\)

\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq 3\sqrt[3]{\frac{b^3}{64^2}}=\frac{3b}{16}\)

Cộng theo vế các BĐT trên và rút gọn :

\(\Rightarrow P+\frac{a+b+c+3}{32}\geq \frac{3(a+b+c)}{16}\)

\(\Leftrightarrow P+\frac{4}{32}\geq \frac{3}{16}\Leftrightarrow P\geq \frac{1}{16}\)

Vậy \((*)\) được chứng minh. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)