Phân tích đa thức sau thành nhân tử
\(x^3-3x^2+3x-1-y^3\)
Phân tích đa thức thành nhân tử:
\(x^3+y^3-3x^2+3x-1\)
\(x^3-3x^2y+x+3xy^2-y-y^3\)
\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)
\(x^3-3x^2y+x+3xy^2-y-y^3\\=(x^3-3x^2y+3xy^2-y^3)+(x-y)\\=(x-y)^3+(x-y)\\=(x-y)[(x-y)^2+1]\\=(x-y)(x^2-2xy+y^2+1)\)
phân tích đa thức thành nhân tử
(3x+1)^2-(3x-1)^2
(x+y)^2-(x-y)^2
(x+y)^3-(x-y)^3
x^3+y^3+z^3-3xyz
\(\left(3x+1\right)^2-\left(3x-1\right)^2\)
\(=\left(3x+1-3x+1\right)\left(3x+1+3x-1\right)\)
\(=2\cdot6x\)
\(=12x\)
_________
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y\)
\(=4xy\)
\(\left(x+y\right)^3+\left(x-y\right)^3\)
\(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\cdot\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)
\(=2x\cdot\left(x^2+3y^2\right)\)
______
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3+3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2-xy-xz-yz\right)\)
Phân tích đa thức sau thành nhân tử
\(x^3-3x^2+3x-1-y^3\)\(x^3-3x^2+3x-1-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\text{[ (x-1)^2+y(x-1)+y^2}\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
phân tích đa thức sau thành nhân tử
x^3+3x^2y+3xy^2+y^3-x-y
Phân tích các đa thức sau thành nhân tử: (3x - 2)(4x - 3) (2 - 3x )(x - 1) - 2(3x - 2)( x +1)
Phân tích đa thức thành nhân tử:
x\(^3\)-64y\(^3\)+3x\(^2\)+3x+1
= (x3+3x2+3x+1)-(4y)3
=(x+1)3-(4y)3
=(x+1-4y)[(x+1)2+(x+1).4y+16y2 ]
=(x+1-4y)[(x2+2x+1)+(4xy+4y)+16y2]
phân tích đa thức thành nhân tử
x3-3x2-3x-1-y3
x3 - 3x2 - 3x - 1 -y3
= (x3 - y3) - (3x2 + 3x) - 1
= [(x-y)x2 + (x-y)xy + (x-y)y2 ] - 3x(x+1) -1
= (x-y)(x2+xy+y2) - 3x(x+1) - 1
Phân tích đa thức sau thành nhân tử
a ) 9(x+y-1)^2 - 4 (2x+3y+1)^2
b ) 3x^4y^2 +3x^3y^2 +3xy^2 +3y^2
c ) ( x+y )^3 - 1 -3xy( x + y -1)
d ) x^3 + 3x^2 + 3x +1 - 27z^3
Bài làm :
\(\text{a)}9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
\(\text{b)}3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)
\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)
\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)
\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
\(\text{c)}\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)
\(d ) x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
a) \(x^3y^3+125=\left(xy\right)^3+5^3=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
b) \(8x^3+y^3-6xy\left(2x+y\right)=\left(8x^3+y^3\right)-6xy\left(2x+y\right)=[\left(2x\right)^3+y^3]-6xy\left(2x+y\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-6xy\left(2x+y\right)=\left(2x+y\right)\left(4x^2-2xy+y^2-6xy\right)\)
\(=\left(2x+y\right)\left(4x^2-8xy+y^2\right)\)
c) \(\left(3x+2\right)^2-2\left(x-1\right)\left(3x+2\right)+\left(x-1\right)^2\)
\(=[\left(3x+2\right)-\left(x-1\right)]^2=\left(3x+2-x+1\right)^2=\left(2x+3\right)^2=\left(2x+3\right)\left(2x+3\right)\)