tính nhanh:1/1.2+1/2.3 +... +1/99.100
10.4. Tính tổng
a) \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
b) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)
c) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +...........\(\dfrac{1}{99.100}\)
d) \(\dfrac{3}{1.2}\) + \(\dfrac{3}{2.3}\) +.........\(\dfrac{1}{99.100}\)
giúp em
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
Tính nhanh:
1)1.2+2.3+3.4+4.5+...+99.100
2) 1:20+1:44+1:77+1:119+1:170
Bài 1 :
Đặt A=1.2+2.3+3.4+4.5+.........+99.100
=> 3A=1.2.3+2.3.(4-1)+........+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+........+99.100.101-98.99.100
3A=99.100.101
A=33.100.101
A=333300
Bài 2 :
1:20 + 1:44 + 1:77 + 1:119 + 1:170 = \(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+\frac{1}{119}+\frac{1}{170}=\frac{1}{10}=0,1\)
1)1.2+2.3+3.4+4.5+...+99.100
đặt 3D=1.2+2.3+3.4+...+99.100
=1.2.3+2.8.3+...+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5
=99.100.101
=999900
D=999900:3=333300
nếu đúng nhớ cảm ơn nhak. mình ko bít làm bài 2
\(\frac{1}{20}+\left(\frac{1}{44}+\frac{1}{77}\right)+\left(\frac{1}{119}+\frac{1}{170}\right)=\frac{1}{20}+\left(\frac{1}{11}.\frac{1}{4}+\frac{1}{11}.\frac{1}{7}\right)+\left(\frac{1}{17}.\frac{1}{7}+\frac{1}{17}.\frac{1}{10}\right)\)
= \(\frac{1}{20}+\frac{1}{11}.\left(\frac{1}{4}+\frac{1}{7}\right)+\frac{1}{17}.\left(\frac{1}{7}+\frac{1}{10}\right)=\frac{1}{20}+\frac{1}{11}.\frac{11}{28}+\frac{1}{17}.\frac{17}{70}=\frac{1}{20}+\frac{1}{28}+\frac{1}{70}\)
= \(\frac{1}{20}+\frac{1}{14}.\left(\frac{1}{2}+\frac{1}{5}\right)=\frac{1}{20}+\frac{1}{14}.\frac{7}{10}=\frac{1}{20}+\frac{1}{20}=\frac{2}{20}=0,1\)
tính nhanh :\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{99}{100}\)
Tính nhanh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
thấy đúng thì k cho mk nha mấy bạn
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Tính tổng: M=1.2+2.3+....+48.49 N=1+2+...+48 A=1.2+2.3+...+99.100 Cảm ơn
b: Tổng của N là:
\(\dfrac{49\cdot48}{2}=49\cdot24=1176\)
a) \(3M=1.2.3+2.3.3+...+48.49.3=1.2.3+2.3.\left(4-1\right)+...+48.49.\left(50-47\right)=1.2.3+2.3.4-1.2.3+...+48.49.50-47.48.49=48.49.50\Rightarrow M=\dfrac{48.49.50}{3}\Rightarrow M=39200\)
b) Tương tự câu a
Tính :
1/1.2 + 1/2.3 + 1/3.4 + . . . + 1/99.100
Answer:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{100}{100}-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
tính nhanh các tổng
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=1-1/2+1/2-1/3+....+1/99-1/100
=1-1/00
=99/100
Tick
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
tính P=1/1.2+1/2.3+...+1/99.100
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
1/1.2-1/2.3-...-1/99.100
Ai nhanh nhất mình sẽ tic cho
\(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}-...-\frac{1}{99\cdot100}\)
=\(\frac{1}{1}\cdot\frac{1}{2}-\frac{1}{2}\cdot\frac{1}{3}-...-\frac{1}{99}\cdot\frac{1}{100}\)
=\(\frac{1}{1}-\frac{1}{100}\)
=\(\frac{99}{100}\)