cho x+y=1 tính
a=x^2+2xy+y^2+2022
Thực hiện phép tính
a) x. (x + y) + 5y - x2
b) (x - 2). (y + 1) - xy + 4
c) (4x2y + 12xy2 - 8xy) : (2xy)
d) (x - 4)2 - 7 + 8x
Bài 6. Cho x2 + xy = 3
Tính giá trị biểu thức M = x(x2 + y) + x2(y + 1) - 3(x + 1)
Bài 1:
a: \(x\left(x+y\right)+5y-x^2\)
\(=x^2+xy+5y-x^2\)
=xy+5y
b: \(\left(x-2\right)\left(y+1\right)-xy+4\)
\(=xy+x-2y-2-xy+4\)
=-2y+x+2
c: \(\dfrac{\left(4x^2y+12xy^2-8xy\right)}{2xy}\)
\(=\dfrac{2xy\cdot2x+2xy\cdot6y-2xy\cdot4}{2xy}\)
=2x+6y-4
d: \(\left(x-4\right)^2+8x-7\)
\(=x^2-8x+16+8x-7\)
\(=x^2+9\)
bài 5: thực hiện phép tính
a) ( x + 3y ) ( x - 2y )
b) ( 2x - y ) ( y - 5x )
c) ( 2x - 5y ) ( y^2 - 2xy )
d) ( x - y ) ( x^2 - xy - y^2 )
\(a)\left(x+3y\right)\left(x-2y\right)\\ =x^3-2xy+3xy-6y^2\\ =x^2+xy-6y^2\\ b)\left(2x-y\right)\left(y-5x\right)\\ = 2xy-10x^2-y^2+5xy\\ =7xy-10x^2-y^2\\ c)\left(2x-5y\right)\left(y^2-2xy\right)\\ =2xy^2-4x^2y-5y^3+10xy^2\\ =12xy^2-4x^2y-5y^2\\ d)\left(x-y\right)\left(x^2-xy-y^2\right)\\ =x^3-x^2y-xy^2-x^2y+xy^2+y^3\\ =x^3-2x^2y+y^3\)
Cho x , y là các số thực tùy ý. Tìm giá trị nhỏ nhất của biểu thức:
A = x\(^2\) + 2y\(^2\) + 2xy - 2\(\sqrt{2}\)x - 2(\(\sqrt{2}\) + 1)y +2022
Lời giải:
$A=(x^2+2xy+y^2)+y^2-2\sqrt{2}(x+y)-2y+2022$
$=(x+y)^2-2\sqrt{2}(x+y)+2+(y^2-2y+1)+2019$
$=(x+y-\sqrt{2})^2+(y-1)^2+2019$
$\geq 2019$
Vậy $A_{\min}=2019$. Giá trị này đạt tại $x+y-\sqrt{2}=y-1=0$
$\Leftrightarrow y=1; x=\sqrt{2}-1$
thực hiện phép tính
a.\(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
b.\(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x\ne-y\\3x\ne y\end{matrix}\right.\)
a. \(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
\(=\dfrac{x.\left(3x-y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{x.\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{2xy}{9x^2-y^2}\)
\(=\dfrac{x.\left(3x+y+3x-y\right)+2xy}{\left(3x-y\right).\left(3x+y\right)}\)
\(=\dfrac{6x^2+2xy}{\left(3x-y\right).\left(3x+y\right)}\)
\(=\dfrac{2x\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}\)
\(=\dfrac{2x}{3x-y}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\ne-5\end{matrix}\right.\)
b. \(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
\(=\dfrac{4x+5}{x.\left(x+5\right)}-\dfrac{3x}{x.\left(x+5\right)}\)
\(=\dfrac{x+5}{x.\left(x+5\right)}\)
\(=\dfrac{1}{x}\)
a) Ta có: \(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
\(=\dfrac{x\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}+\dfrac{x\left(3x+y\right)}{\left(3x+y\right)\left(3x-y\right)}+\dfrac{2xy}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{3x^2-xy+3x^2+xy+2xy}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{6x^2+2xy}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{2x\left(3x+y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{2x}{3x-y}\)
b) Ta có: \(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
\(=\dfrac{4x+5}{x\left(x+5\right)}-\dfrac{3x}{x\left(x+5\right)}\)
\(=\dfrac{4x+5-3x}{x\left(x+5\right)}\)
\(=\dfrac{x+5}{x\left(x+5\right)}\)
\(=\dfrac{1}{x}\)
Cho \(a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}=x\)
\(Tính\) \(P=\dfrac{2022\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}\)
Tìm giá trị lớn nhất A=x(4-x)
Rút gọn rồi tính
A=(7x+5)2+(3x-5)2-(10x-6x)(5+7x)
Tại x=-2
B=(2x+y)(y2+4x^2-2xy)-8x(x-1)(x+1)
Tại x=-2 y=3
Bài 2:
a) Ta có: \(A=\left(7x+5\right)^2+\left(3x-5\right)^2-\left(10-6x\right)\left(5+7x\right)\)
\(=\left(7x+5\right)^2+2\cdot\left(7x+5\right)\cdot\left(3x-5\right)+\left(3x-5\right)^2\)
\(=\left(7x+5+3x-5\right)^2\)
\(=\left(10x\right)^2=100x^2\)
Thay x=-2 vào A, ta được:
\(A=100\cdot\left(-2\right)^2=100\cdot4=400\)
b) Ta có: \(B=\left(2x+y\right)\left(y^2-2xy+4x^2\right)-8x\left(x-1\right)\left(x+1\right)\)
\(=8x^3+y^3-8x\left(x^2-1\right)\)
\(=8x^3+y^3-8x^3+8x\)
\(=8x+y^3\)
Thay x=-2 và y=3 vào B, ta được:
\(B=-2\cdot8+3^3=-16+27=11\)
Bài 1:
Ta có: \(A=x\left(4-x\right)\)
\(=4x-x^2\)
\(=-\left(x^2-4x\right)\)
\(=-\left(x^2-4x+4\right)+4\)
\(=-\left(x-2\right)^2+4\le4\forall x\)
Dấu '=' xảy ra khi x=2
Vậy: \(A_{max}=4\) khi x=2
Cho x,y,z đoio một khác nhau thỏa mãn x+y+z=0
Tính \(P=\dfrac{2022\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}\)
Em tham khảo:
cho 3 số x,y,z đôi một khác nhau và x+y+z=0 Tính\(P=\dfrac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2... - Hoc24
câu 1 thực hiện phép tính
a) x2/x+1 + x/x+1 b)[2xy/x2-y2 + x-y/2x+2y] : x+y/2x
câu 2 cho phân thức 3x2+3x/x-1
a) tìm giá trị của x để giá trị phân thúc được xác định
b) tìm giá trị của x để giá trị của phân thúc bằng 0 ?
\(1,\\ a,\dfrac{x^2}{x+1}+\dfrac{x}{x+1}=\dfrac{x^2+x}{x+1}=\dfrac{x\left(x+1\right)}{x+1}=x\)
\(b,\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\dfrac{2x}{x+y}=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}=\dfrac{2x\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{x}{x-y}\)
1)Tìm x,y biết: 2x^2+y^2+6x-2xy+9=0
2)Tìm GTNN của bt: A=(x-2021)2+(x+2022)2
3)Cho a là một số nguyên. CMR: P=(a+1)(a+3)(a+5)(a+7)+16 là một số chính phương
\(a,2x^2+y^2+6x-2xy+9=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+6x+9\right)=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-3\end{matrix}\right.\Leftrightarrow x=y=-3\\ b,A=\left(x-2021\right)^2+\left(x+2022\right)^2=x^2-4042x+2021^2+x^2+4044x+2022^2\\ A=2x^2+2x+2021^2+2022^2\\ A=2\left(x^2+x+\dfrac{1}{4}\right)+2021^2+2022^2-\dfrac{1}{2}\\ A=2\left(x+\dfrac{1}{2}\right)^2+2021^2+2022^2-\dfrac{1}{2}\ge2021^2+2022^2-\dfrac{1}{2}\\ A_{max}=2021^2+2022^2-\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)\(c,P=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\\ P=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\\ P=\left(a^2+8a+11\right)^2-16+16=\left(a^2+8a+11\right)^2\left(Đpcm\right)\)