Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Robert Mikhaylovic
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 20:44

Bài 1:

a: \(x\left(x+y\right)+5y-x^2\)

\(=x^2+xy+5y-x^2\)

=xy+5y

b: \(\left(x-2\right)\left(y+1\right)-xy+4\)

\(=xy+x-2y-2-xy+4\)

=-2y+x+2

c: \(\dfrac{\left(4x^2y+12xy^2-8xy\right)}{2xy}\)

\(=\dfrac{2xy\cdot2x+2xy\cdot6y-2xy\cdot4}{2xy}\)

=2x+6y-4

d: \(\left(x-4\right)^2+8x-7\)

\(=x^2-8x+16+8x-7\)

\(=x^2+9\)

 

Nguyễn Ngọc Phương Trinh
Xem chi tiết
乇尺尺のレ
12 tháng 9 2023 lúc 0:01

\(a)\left(x+3y\right)\left(x-2y\right)\\ =x^3-2xy+3xy-6y^2\\ =x^2+xy-6y^2\\ b)\left(2x-y\right)\left(y-5x\right)\\ = 2xy-10x^2-y^2+5xy\\ =7xy-10x^2-y^2\\ c)\left(2x-5y\right)\left(y^2-2xy\right)\\ =2xy^2-4x^2y-5y^3+10xy^2\\ =12xy^2-4x^2y-5y^2\\ d)\left(x-y\right)\left(x^2-xy-y^2\right)\\ =x^3-x^2y-xy^2-x^2y+xy^2+y^3\\ =x^3-2x^2y+y^3\)

VUX NA
Xem chi tiết
Akai Haruma
9 tháng 8 2021 lúc 22:24

Lời giải:
$A=(x^2+2xy+y^2)+y^2-2\sqrt{2}(x+y)-2y+2022$

$=(x+y)^2-2\sqrt{2}(x+y)+2+(y^2-2y+1)+2019$

$=(x+y-\sqrt{2})^2+(y-1)^2+2019$

$\geq 2019$
Vậy $A_{\min}=2019$. Giá trị này đạt tại $x+y-\sqrt{2}=y-1=0$

$\Leftrightarrow y=1; x=\sqrt{2}-1$

 

nguyen ngoc son
Xem chi tiết
Nguyễn Phương Linh
15 tháng 2 2021 lúc 19:38

ĐKXĐ: \(\left\{{}\begin{matrix}3x\ne-y\\3x\ne y\end{matrix}\right.\)

 

a. \(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)

\(=\dfrac{x.\left(3x-y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{x.\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{2xy}{9x^2-y^2}\)

\(=\dfrac{x.\left(3x+y+3x-y\right)+2xy}{\left(3x-y\right).\left(3x+y\right)}\)

\(=\dfrac{6x^2+2xy}{\left(3x-y\right).\left(3x+y\right)}\)

\(=\dfrac{2x\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}\)

\(=\dfrac{2x}{3x-y}\)

Nguyễn Phương Linh
15 tháng 2 2021 lúc 19:42

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\ne-5\end{matrix}\right.\)

 

b. \(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)

\(=\dfrac{4x+5}{x.\left(x+5\right)}-\dfrac{3x}{x.\left(x+5\right)}\)

\(=\dfrac{x+5}{x.\left(x+5\right)}\)

\(=\dfrac{1}{x}\)

Nguyễn Lê Phước Thịnh
15 tháng 2 2021 lúc 19:50

a) Ta có: \(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)

\(=\dfrac{x\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}+\dfrac{x\left(3x+y\right)}{\left(3x+y\right)\left(3x-y\right)}+\dfrac{2xy}{\left(3x+y\right)\left(3x-y\right)}\)

\(=\dfrac{3x^2-xy+3x^2+xy+2xy}{\left(3x+y\right)\left(3x-y\right)}\)

\(=\dfrac{6x^2+2xy}{\left(3x+y\right)\left(3x-y\right)}\)

\(=\dfrac{2x\left(3x+y\right)}{\left(3x+y\right)\left(3x-y\right)}\)

\(=\dfrac{2x}{3x-y}\)

b) Ta có: \(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)

\(=\dfrac{4x+5}{x\left(x+5\right)}-\dfrac{3x}{x\left(x+5\right)}\)

\(=\dfrac{4x+5-3x}{x\left(x+5\right)}\)

\(=\dfrac{x+5}{x\left(x+5\right)}\)

\(=\dfrac{1}{x}\)

ILoveMath
Xem chi tiết
Học sinh đang ôn thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 0:07

Bài 2: 

a) Ta có: \(A=\left(7x+5\right)^2+\left(3x-5\right)^2-\left(10-6x\right)\left(5+7x\right)\)

\(=\left(7x+5\right)^2+2\cdot\left(7x+5\right)\cdot\left(3x-5\right)+\left(3x-5\right)^2\)

\(=\left(7x+5+3x-5\right)^2\)

\(=\left(10x\right)^2=100x^2\)

Thay x=-2 vào A, ta được:

\(A=100\cdot\left(-2\right)^2=100\cdot4=400\)

b) Ta có: \(B=\left(2x+y\right)\left(y^2-2xy+4x^2\right)-8x\left(x-1\right)\left(x+1\right)\)

\(=8x^3+y^3-8x\left(x^2-1\right)\)

\(=8x^3+y^3-8x^3+8x\)

\(=8x+y^3\)

Thay x=-2 và y=3 vào B, ta được:

\(B=-2\cdot8+3^3=-16+27=11\)

Học sinh đang ôn thi
22 tháng 7 2021 lúc 10:18

Ai help mk vs

Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 0:05

Bài 1: 

Ta có: \(A=x\left(4-x\right)\)

\(=4x-x^2\)

\(=-\left(x^2-4x\right)\)

\(=-\left(x^2-4x+4\right)+4\)

\(=-\left(x-2\right)^2+4\le4\forall x\)

Dấu '=' xảy ra khi x=2

Vậy: \(A_{max}=4\) khi x=2

ILoveMath
Xem chi tiết
Lấp La Lấp Lánh
30 tháng 9 2021 lúc 21:34

Em tham khảo:

cho 3 số x,y,z đôi một khác nhau và x+y+z=0 Tính\(P=\dfrac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2... - Hoc24

Boruto MB
Xem chi tiết
ILoveMath
3 tháng 12 2021 lúc 10:17

\(1,\\ a,\dfrac{x^2}{x+1}+\dfrac{x}{x+1}=\dfrac{x^2+x}{x+1}=\dfrac{x\left(x+1\right)}{x+1}=x\)

\(b,\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\dfrac{2x}{x+y}=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}=\dfrac{2x\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{x}{x-y}\)

Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 14:00

Câu 2: 

a: ĐKXĐ: \(x\ne1\)

Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 15:27

\(a,2x^2+y^2+6x-2xy+9=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+6x+9\right)=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-3\end{matrix}\right.\Leftrightarrow x=y=-3\\ b,A=\left(x-2021\right)^2+\left(x+2022\right)^2=x^2-4042x+2021^2+x^2+4044x+2022^2\\ A=2x^2+2x+2021^2+2022^2\\ A=2\left(x^2+x+\dfrac{1}{4}\right)+2021^2+2022^2-\dfrac{1}{2}\\ A=2\left(x+\dfrac{1}{2}\right)^2+2021^2+2022^2-\dfrac{1}{2}\ge2021^2+2022^2-\dfrac{1}{2}\\ A_{max}=2021^2+2022^2-\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)\(c,P=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\\ P=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\\ P=\left(a^2+8a+11\right)^2-16+16=\left(a^2+8a+11\right)^2\left(Đpcm\right)\)