Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le võ hạ trâm
Xem chi tiết
TIAe
Xem chi tiết
Trần Hoàng Anh
Xem chi tiết
Lê Song Phương
5 tháng 8 2023 lúc 8:33

 Ta nhận thấy \(AH^2=\left(2\sqrt{5}\right)^2=20\) và \(BH.CH=4.5=20\) và \(AH\perp BC\) tại H nên tam giác ABC sẽ là tam giác vuông tại A. chỉ cần làm như sau:

 Vẽ đường thẳng d bất kì. Trên đó lấy 3 điểm B, C, H sao cho H nằm giữa B và C thỏa mãn \(BH=4cm,CH=5cm\)

 

Sau đó, ta chỉ cần dựng đường thẳng qua H vuông góc với BC cắt đường tròn đường kính BC tại A là xong.

Sau đó ta xóa đi các chi tiết thừa và được hình vẽ đúng theo ycbt.

Lê Song Phương, em ơi, em vẽ hình đẹp quá, thế điểm I; K đối xứng với H qua AB và AC của cô đâu rồi nhỉ? 

Bài này chỉ cần vẽ hình,nhưng cô tìm mãi vẫn chưa thấy I và K đâu em ha!

 

Lê Song Phương
5 tháng 8 2023 lúc 8:47

 Dạ thưa cô, em nghĩ là cái đó bạn tự dựng được nên em chỉ cái khó nhất cho bạn ấy thôi ạ.

HMQuan
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 10 2023 lúc 10:31

loading...  loading...  

Ly Ly
Xem chi tiết
Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2022 lúc 20:53

Bài 2: 

a: \(BC=\sqrt{10^2+8^2}=2\sqrt{41}\left(cm\right)\)

\(AH=\dfrac{8\cdot10}{2\sqrt{41}}=\dfrac{40}{\sqrt{41}}\left(cm\right)\)

\(BH=\dfrac{64}{2\sqrt{41}}=\dfrac{32}{\sqrt{41}}\left(cm\right)\)

\(CH=\dfrac{100}{2\sqrt{41}}=\dfrac{50}{\sqrt{41}}\left(cm\right)\)

b: \(\dfrac{AD}{BD}=\dfrac{AH^2}{AB}:\dfrac{BH^2}{AB}=\dfrac{AH^2}{BH^2}\)

㌻
Xem chi tiết
Dieu Ngo
20 tháng 11 2016 lúc 16:43

Ôn tập toán 9

Dieu Ngo
20 tháng 11 2016 lúc 17:08

Ôn tập toán 9

An Ninh Vũ
20 tháng 11 2016 lúc 14:53

Con gái hay con trai mà chăm dữ cha :o 12h đêm lun

Thẩm Quang Huy
Xem chi tiết
Phùng Minh Quân
9 tháng 8 2019 lúc 20:53

câu a) bn có thể vào câu hỏi tương tự xem, cái này làm vui thôi 

Ta có: \(BN=\frac{BH^2}{AB};CM=\frac{CH^2}{AC};AB.AC=AH.BC;BH.CH=AH^2\)

\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\)

\(\Leftrightarrow\)\(BC^2=BN^2+CM^2+3\sqrt[3]{\left(BN.CM\right)^2}\left(\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\right)\)

\(\Leftrightarrow\)\(BC^2=BH^2-NH^2+CH^2-MH^2+3\sqrt[3]{\left(\frac{\left(BH.CH\right)^2}{AB.AB}\right)^2}.\sqrt[3]{BC^2}\)

\(\Leftrightarrow\)\(BC^2=\left(BH^2+CH^2\right)-\left(NH^2+MH^2\right)+3\sqrt[3]{\left(\frac{AH^4}{AH.BC}\right)^2}.\sqrt[3]{BC^2}\)

\(\Leftrightarrow\)\(BC^2=\left(BH+CH\right)^2-2BH.CH-\left(NH^2+MH^2\right)+3\sqrt[3]{\frac{AH^6}{BC^2}}.\sqrt[3]{BC^2}\)

\(\Leftrightarrow\)\(BC^2=BC^2-2AH^2-AH^2+3AH^2\) ( do \(NH^2=AM^2\) ) 

\(\Leftrightarrow\)\(BC^2=BC^2\) ( luôn đúng ) 

\(\Rightarrow\)\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\) đúng 

Phùng Minh Quân
9 tháng 8 2019 lúc 21:01

b) bằng một cách nào đó \(\Delta NBH\) đã đồng dạng với \(\Delta ABC\) ( có góc B chung ) \(\Rightarrow\)\(\frac{BN}{AB}=\frac{BH}{BC}\)

Tương tự: \(\Delta MHC~\Delta ABC\) ( có góc C chung ) \(\Rightarrow\)\(\frac{CM}{AC}=\frac{CH}{BC}\)

\(\Rightarrow\)\(\frac{BN}{AB}+\frac{CM}{AC}=\frac{BH+CH}{BC}=1\)

\(\Leftrightarrow\)\(BN.AC+CM.AB=AB.AB\)

\(\Leftrightarrow\)\(BN\sqrt{AC^2}+CM\sqrt{AB^2}=AB.AC\)

\(\Leftrightarrow\)\(BN\sqrt{CH.BC}+CM\sqrt{BH.BC}=AH.BC\)

\(\Leftrightarrow\)\(BN\sqrt{CH}+CM\sqrt{BH}=AH\sqrt{BC}\) ( chia 2 vế cho \(\sqrt{BC}\ne0\) ) đpcm 

Thẩm Quang Huy
10 tháng 8 2019 lúc 13:26

Thank chị.

Dương Tịch
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 8 2018 lúc 11:24