giải BPT
a, \(1-x+2\sqrt{2x^2-3x-5}< 0\)
giải BPT
a, \(1-x+2\sqrt{2x^2-3x-5}< 0\)
b, \(\frac{\sqrt{x^2-16}}{\sqrt{x-3}}+\sqrt{x-3}>\frac{5}{\sqrt{x-3}}\)
c,\(\left|x^2-3x+2\right|+x^2>2x\)
ai giải nhanh mik tick cho
giải BPT
a, \(1-x+2\sqrt{2x^2-3x-5}< 0\)
b, \(\frac{\sqrt{x^2-16}}{\sqrt{x-3}}+\sqrt{x-3}>\frac{5}{\sqrt{x-3}}\)
c,\(\left|x^2-3x+2\right|+x^2>2x\)
ai giải nhanh mik tick cho
Giải hệ: \(\hept{\begin{cases}x+\sqrt{x^2-2x+5}=3y+\sqrt{y^2+4}\\x^2-y^2-3x+3y+1=0\end{cases}}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
giải bpt
a. \(x^2-3x+2\le0\)
b.\(x^4-3x^2+2\le0\)
c.\(\dfrac{1}{x^2-x+1}\le\dfrac{1}{2x^2+x+2}\)
a: =>(x-1)(x-2)<=0
=>1<=x<=2
b: =>(x^2-1)(x^2-2)<=0
=>1<=x^2<=2
=>\(\left[{}\begin{matrix}1< =x< =\sqrt{2}\\-1>=x>=-\sqrt{2}\end{matrix}\right.\)
giải các phương trình sau:
a. \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
b. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c. \(\sqrt{\dfrac{3x-2}{x+1}}=3\)
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
Giải hệ phương trình: \(\begin{cases}\frac{y^2\left(y^2-x\right)+\sqrt{y^2+2}}{-x^2-x+2}=\frac{1}{\sqrt{x+3}-x-1}\\3y^4+y^2-\left(2x+4\right)\sqrt{3x^2+x+1}=0\end{cases}\)
Giải : a) \(x^2+2\sqrt{3}x+2x+2\sqrt{3}=0\)
b) \(\begin{cases}3x+2y=1\\4x-5y=-1\end{cases}\)
b/ \(\begin{cases}3x+2y=1\\4x-5y=-1\end{cases}\) \(\Leftrightarrow\begin{cases}12x+8y=4\\12x-15y=-3\end{cases}\)
Lấy pt đầu trừ pt sau : \(23y=7\Leftrightarrow y=\frac{7}{23}\)
thay vào một trong hai pt đã cho được \(x=\frac{3}{23}\)
c/
Ta có : \(x^2+2\sqrt{3}x+2x+2\sqrt{3}=0\Leftrightarrow x^2+2x\left(\sqrt{3}+1\right)+2\sqrt{3}=0\)
Xét \(\Delta'=\left(\sqrt{3}+1\right)^2-2\sqrt{3}=4\)
\(\Rightarrow\left[\begin{array}{nghiempt}x_1=-\left(\sqrt{3}+1\right)-2=-3-\sqrt{3}\\x_2=-\left(\sqrt{3}+1\right)+2=1-\sqrt{3}\end{array}\right.\)
Giải phương trình :
\(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
Bài 1 : Giải phương trình bằng cách đưa về phương trình tích
a) (2x+1) (3x-2) = (5x-8) (2x+1)
b) (4x^2-1) = (2x+1) (3x-5)
c) (x+1)^2 = 4 . (x^2-2x+1)
d) 2x^3 + 5x^2 - 3x = 0
Bài 2 : Giải phương trình :
a) 1/2x-3 - 3/x.(2x-3) = 5/x
b) x+2/x-2 - 1/x = 2/x.(x-2)
c) x+1/x-2 + x-1/x+2 = 2(x^2+2)/x^2-4
Bài 3 : Giải phương trình :
x^4 + x^3 + 3x^2 + 2x + 2 = 0
Help mee
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Bài 2:
a: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)
\(\Leftrightarrow x-3=5\left(2x-3\right)=10x-15\)
=>-9x=-12
hay x=4/3
b: \(\Leftrightarrow x\left(x+2\right)-x+2=2\)
=>x2+2x-x+2=2
=>x2+x=0
=>x=0(loại) hoặc x=-1(nhận)
c: \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+3x+2+x^2-3x+2=2x^2+4\)
=>4=4(luôn đúng)
Vậy: S={x|x<>2; x<>-2}